CONTENTS

PREFACE
7

INTRODUCTION
10

PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Glossary of Terms</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbreviations</td>
<td>26</td>
</tr>
<tr>
<td>Referenced Documents</td>
<td>30</td>
</tr>
<tr>
<td>Other References</td>
<td>36</td>
</tr>
</tbody>
</table>

PART 1: PLANNING AND DESIGN

<table>
<thead>
<tr>
<th>Contents</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>49</td>
</tr>
<tr>
<td>General</td>
<td>52</td>
</tr>
<tr>
<td>Concept Design</td>
<td>60</td>
</tr>
<tr>
<td>General Design</td>
<td>66</td>
</tr>
<tr>
<td>Materials Design</td>
<td>76</td>
</tr>
<tr>
<td>Hydraulic Design</td>
<td>77</td>
</tr>
<tr>
<td>Vacuum Station Design</td>
<td>80</td>
</tr>
<tr>
<td>Power System</td>
<td>92</td>
</tr>
<tr>
<td>Controls and Telemetry System</td>
<td>95</td>
</tr>
<tr>
<td>Vacuum Sewer Design</td>
<td>99</td>
</tr>
<tr>
<td>Collection Chambers</td>
<td>110</td>
</tr>
<tr>
<td>Pumping System</td>
<td>114</td>
</tr>
<tr>
<td>Pump Discharge Pipe Work</td>
<td>119</td>
</tr>
<tr>
<td>Pressure Mains</td>
<td>123</td>
</tr>
<tr>
<td>Structural Design</td>
<td>124</td>
</tr>
<tr>
<td>Site Infrastructure</td>
<td>134</td>
</tr>
<tr>
<td>Supporting Systems</td>
<td>137</td>
</tr>
<tr>
<td>Health and Safety</td>
<td>139</td>
</tr>
<tr>
<td>Design Review</td>
<td>141</td>
</tr>
<tr>
<td>Design Documentation and Drawings</td>
<td>142</td>
</tr>
</tbody>
</table>

PART 2: PRODUCTS AND MATERIALS

<table>
<thead>
<tr>
<th>Contents</th>
<th>148</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and Materials Overview</td>
<td>159</td>
</tr>
</tbody>
</table>
PART 3: CONSTRUCTION

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 General</td>
<td>170</td>
</tr>
<tr>
<td>22 Quality</td>
<td>172</td>
</tr>
<tr>
<td>23 General Construction</td>
<td>175</td>
</tr>
<tr>
<td>24 Products, Materials and Equipment</td>
<td>182</td>
</tr>
<tr>
<td>25 Electrical Works</td>
<td>189</td>
</tr>
<tr>
<td>26 Telemetry System</td>
<td>202</td>
</tr>
<tr>
<td>27 Odour Control System</td>
<td>204</td>
</tr>
<tr>
<td>28 Mechanical Installation of Pumps, Vacuum Generators, Valves and Fittings</td>
<td>205</td>
</tr>
<tr>
<td>29 Metalwork</td>
<td>207</td>
</tr>
<tr>
<td>30 Access Road and Hardstand Areas</td>
<td>209</td>
</tr>
<tr>
<td>31 Retaining Walls</td>
<td>211</td>
</tr>
<tr>
<td>32 Excavation</td>
<td>214</td>
</tr>
<tr>
<td>33 Bedding For Pipes, Bends, Collection Chambers and Maintenance Structures</td>
<td>216</td>
</tr>
<tr>
<td>34 Pipe Laying and Jointing</td>
<td>217</td>
</tr>
<tr>
<td>35 Collection Chambers and Maintenance Holes (MHS)</td>
<td>223</td>
</tr>
<tr>
<td>36 Maintenance Shafts (MS and TMS) and Inspection Openings (IO)</td>
<td>225</td>
</tr>
<tr>
<td>37 Pipe Embedment and Support</td>
<td>226</td>
</tr>
<tr>
<td>38 Fill</td>
<td>229</td>
</tr>
<tr>
<td>39 Connection to Existing Sewers</td>
<td>231</td>
</tr>
<tr>
<td>40 Restoration</td>
<td>232</td>
</tr>
<tr>
<td>41 Acceptance Testing</td>
<td>234</td>
</tr>
<tr>
<td>42 Commissioning</td>
<td>246</td>
</tr>
<tr>
<td>43 Tolerances on As-Constructed Work</td>
<td>251</td>
</tr>
<tr>
<td>44 Work As Constructed Details</td>
<td>254</td>
</tr>
</tbody>
</table>

PART 4: STANDARD DRAWINGS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 Introduction</td>
<td>258</td>
</tr>
<tr>
<td>46 Listing of Standard Drawings</td>
<td>259</td>
</tr>
<tr>
<td>47 Commentary on VAC–1100 Series Drawings - Vacuum Sewers</td>
<td>262</td>
</tr>
<tr>
<td>48 Commentary on VAC–1200 Series Drawings – Collection Chambers</td>
<td>264</td>
</tr>
<tr>
<td>49 Commentary on VAC–1300 Series Drawings - Vacuum Stations</td>
<td>266</td>
</tr>
<tr>
<td>50 Commentary on VAC–1400 Series Drawings - Embedment, Trench Fill and Restraints</td>
<td>267</td>
</tr>
<tr>
<td>51 Property Connection Details</td>
<td>275</td>
</tr>
<tr>
<td>52 Commentary on SEW–1300 Series Drawings - Access Structures</td>
<td>278</td>
</tr>
<tr>
<td>Commentary on SEW–1400 Series Drawings - Special Crossings/Structures Arrangements</td>
<td>281</td>
</tr>
<tr>
<td>54 Commentary on WAT–1300 Series Drawings – Installation Practices</td>
<td>283</td>
</tr>
<tr>
<td>55 Commentary on WAT–1400 Series Drawings – Fabrication Details</td>
<td>307</td>
</tr>
<tr>
<td>Appendix</td>
<td>Title</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Appendix A</td>
<td>Design Example</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Quality Assurance of Products – Quality Assurance Options and Selection</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Ovality Testing of PV and GRP Gravity Sewers – Default Prover Diameters</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Precommissioning Checklist</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Commissioning Schedule</td>
</tr>
</tbody>
</table>
CONTENTS

PREFACE

1 GENERAL
1.1 PLANNING
1.2 VACUUM SEWER SYSTEMS
 1.2.1 Vacuum system philosophy
 1.2.2 Application of vacuum sewerage
 1.2.3 Description of the system
 1.2.3.1 Collection chamber and vacuum pipeline
 1.2.3.2 Vacuum station
1.3 SCOPE
1.4 PURPOSE AND APPLICATION
1.5 PLANNING AND DESIGN RESPONSIBILITIES AND INTERFACES
 1.5.1 General
 1.5.2 Planning responsibilities
 1.5.3 Design responsibilities
 1.5.4 Consultation with other parties
1.6 SEWER SYSTEM DESIGN APPROACH
 1.6.1 Overall objective
 1.6.2 System design life
 1.6.3 Objectives of the system design
 1.6.4 Design output
1.7 DESIGN RESPONSIBILITIES
 1.7.1 Concept Plan
 1.7.2 Concept Design
 1.7.3 Detail Design

2 CONCEPT DESIGN
2.1 LIFE CYCLE CONSIDERATIONS
2.2 FUNCTIONALITY
2.3 MAINTAINABILITY
2.4 RELIABILITY
2.5 DUE DILIGENCE REQUIREMENTS
2.6 MATERIALS DESIGN
2.7 STAGING
2.8 SEPTICITY CONTROL
2.9 ODOUR CONTROL
2.10 TERRORISM
2.11 COMMISSIONING PLAN
2.12 OTHER

3 GENERAL DESIGN
3.1 GENERAL
3.2 DESIGN TOLERANCES
3.3 LEVELS
3.4 UNFORESEEN GROUND CONDITIONS
3.5 IMPACT OF CONSEQUENTIAL DAMAGE
3.6 ENVIRONMENTAL CONSIDERATIONS
 3.6.1 General
 3.6.2 Urban salinity
 3.6.3 Vegetation
 3.6.4 Contaminated sites
 3.6.5 Tidal zones
3.7 EASEMENTS
3.8 SPECIAL DESIGN CONSIDERATIONS
3.9 CROSSINGS
 3.9.1 General
 3.9.2 Creeks and drainage reserves
 3.9.3 Major road crossings
 3.9.4 Railway reserves
3.10 MECHANICAL PROTECTION OF PIPELINES
3.11 OVERHEAD POWER LINES AND TRANSMISSION TOWERS
3.12 OBSTRUCTIONS AND CLEARANCES
 3.12.1 General
 3.12.2 Surface obstructions
 3.12.3 Clearance from transmission towers
 3.12.4 Clearance from structures
 3.12.5 Underground obstructions and services
 3.12.5.1 General
 3.12.5.2 Clearance requirements
 3.12.6 Crossing services
 3.12.7 Deviation of pipelines around structures
3.13 DISUSED OR REDUNDANT PIPELINES
3.14 SEWAGE QUALITY
 3.14.1 Septicity
 3.14.2 Sewage quality / Trade waste management

4 MATERIALS DESIGN
4.1 GENERAL
4.2 CORROSION PROTECTION
 4.2.1 Protective coatings
 4.2.2 Concrete surfaces
 4.2.3 Metallic materials
 4.2.4 Miscellaneous items
 4.2.5 Corrosion protection against aggressive environments
 4.2.6 Cathodic protection
 4.2.7 Stray current corrosion
 4.2.8 Protection against contaminated ground

5 HYDRAULIC DESIGN
5.1 GENERAL
5.2 VACUUM STATION DESIGN INFLOWS
5.3 VACUUM SEWER DESIGN FLOWS
5.3.1 General
5.3.2 Air-to-liquid ratios

6 VACUUM STATION DESIGN
6.1 INTRODUCTION
6.2 SITE SELECTION, LOCATION AND LAYOUT
 6.2.1 Site selection
 6.2.2 Right of occupancy and access
 6.2.3 Location and layout
 6.2.4 Site area
 6.2.5 External site layout and access
6.3 VACUUM STATION LAYOUT
6.4 VACUUM VESSEL
 6.4.1 Operating volume
 6.4.2 Capacity
 6.4.3 Design, construction and testing
6.5 MOISTURE REMOVAL VESSEL
6.6 VACUUM GENERATORS AND PIPE WORK
 6.6.1 Vacuum generator capacity
 6.6.2 Evacuation time
 6.6.3 Vacuum generator types
 6.6.4 Vacuum generator selection
 6.6.5 Vacuum generator operating vacuum
 6.6.6 Vacuum generator motors
 6.6.7 Vacuum pipe work and valves
 6.6.8 Make-up water tank
6.7 EMERGENCY PUMPING ARRANGEMENTS
6.8 SEWAGE DISCHARGE PUMPS AND DELIVERY PIPE WORK
 6.8.1 General
 6.8.2 Electric motors
 6.8.3 Shaft seals
 6.8.4 Equalisation lines
 6.8.5 Total dynamic head (TDH)
 6.8.6 Net positive suction head
 6.8.7 Delivery pipe work
6.9 GAUGES AND RECORDERS
 6.9.1 Vacuum gauges
 6.9.2 Pressure gauges
 6.9.3 Vacuum / Pressure recorder
6.10 NOISE
6.11 ODOR CONTROL
 6.11.1 General
 6.11.2 Biofilters
6.12 SKID-MOUNTED PACKAGED STATIONS

7 POWER SYSTEM
7.1 ELECTRICAL DESIGN AND INSTALLATION
 7.1.1 Scope
7.1.2 Compliance
7.1.3 Responsibilities

7.2 POWER SUPPLY
7.2.1 General
7.2.2 Security of supply
7.2.3 Primary supply
7.2.4 Duplicate supply
7.2.5 Emergency power
7.2.6 On-site generator
7.2.7 Mobile generator
7.2.8 Power factor correction

7.3 POWER AND CONTROL CUBICLE
7.3.1 Design
7.3.2 Switchboard
7.3.3 Meter requirements
7.3.4 Lighting

8 CONTROLS AND TELEMETRY SYSTEM
8.1 GENERAL
8.2 CONTROL SYSTEMS
8.2.1 General
8.2.2 Vacuum generator control
8.2.3 Vacuum vessel control
8.2.4 Pumping control
8.3 ALARMS
8.3.1 General
8.3.2 Locally displayed alarms
8.3.3 Remote alarms
8.4 ALARM, STATUS MONITORING AND CONTROL TELEMETRY
8.4.1 General design principles
8.4.2 Reliability
8.4.3 Alarm creation function

9 VACUUM SEWER DESIGN
9.1 STAGING
9.2 SEWER LAYOUT
9.2.1 General layout
9.2.2 Zoning
9.2.3 Location
9.2.3.1 Vacuum sewers
9.2.3.2 Vacuum sewers in road reserves
9.2.3.3 Vacuum sewers in easements
9.2.4 Sewer depth
9.3 HEADLOSS
9.3.1 Available vacuum
9.3.2 Friction loss
9.3.3 Static lift loss
9.4 SEWER PROFILES

COPYRIGHT
9.4.1 General
9.4.2 Profile design
9.4.3 Lift design
9.4.4 Connection to vacuum vessel
9.4.5 Connecting sewers
9.4.6 Bends
9.4.7 Waterlogging

9.5 PIPE WORK AND FITTINGS FOR VACUUM SEWERS
 9.5.1 General
 9.5.2 Polyvinylchloride (PVC) pipes and fittings
 9.5.3 Polyethylene (PE) pipes and fittings
 9.5.4 Flexible pipes
 9.5.5 Jointing of PVC pipes and fittings
 9.5.6 Jointing of PE pipes and fittings

9.6 DIVISION VALVES
 9.6.1 General
 9.6.2 Division valve chambers
 9.6.3 Division valve covers
 9.6.4 Division valve locations

10 COLLECTION CHAMBERS
 10.1 DESIGN CRITERIA
 10.1.1 General design requirements
 10.1.2 Location
 10.1.3 Number of properties connected
 10.1.4 Maximum flows to collection chambers
 10.1.5 Flotation
 10.1.6 Sensor pipes
 10.1.7 Breather pipes and bells
 10.1.8 Emergency storage
 10.1.9 Covers and frames
 10.2 VACUUM INTERFACE VALVES
 10.2.1 General
 10.2.2 Cycle counters

10.3 SERVICE CONNECTIONS
 10.3.1 General
 10.3.2 Design criteria

11 PUMPING SYSTEM
 11.1 STAGING
 11.2 HYDRAULIC DESIGN
 11.3 PUMP EQUIPMENT
 11.4 PUMP SELECTION
 11.4.1 General
 11.4.2 Total dynamic head (TDH)
 11.4.3 Net positive suction head
 11.4.4 Impeller selection
 11.4.5 Electric motors
11.4.6 Shaft seals
11.4.7 Equalisation lines
11.5 PUMP STARTERS AND VARIABLE SPEED DRIVES
 11.5.1 General
 11.5.2 Single and double speed starters
 11.5.3 Soft starters
 11.5.4 Variable speed drives
11.6 HARMONICS AND RADIO FREQUENCY INTERFERENCE
11.7 EMERGENCY STOP

12 PUMP DISCHARGE PIPE WORK
12.1 GENERAL
12.2 HYDRAULIC DESIGN
12.3 SYSTEM CURVES
12.4 SIZING
12.5 VALVES
 12.5.1 General
 12.5.2 Non-return valves
 12.5.3 Isolating valves
12.6 SCOURS
12.7 DISMANTLING JOINTS
12.8 PIPE WORK SUPPORT
12.9 PRESSURE MAIN TAPPINGS
12.10 ACCESS COVERS
12.11 CONDITION MONITORING AND MAINTENANCE

13 PRESSURE MAINS
13.1 GENERAL

14 STRUCTURAL DESIGN
14.1 VACUUM STATION
 14.1.1 Design loads and forces
 14.1.2 Reinforced concrete structures
 14.1.3 Steel structures
 14.1.4 Foundations
 14.1.5 Vacuum station walls
 14.1.6 Vacuum station slabs
 14.1.6.1 Base slab
 14.1.6.2 Ground level slab
14.2 PIPELINES
 14.2.1 General
 14.2.2 Products and materials
 14.2.3 Structural computations
 14.2.4 Internal forces
 14.2.5 External forces
 14.2.5.1 General
 14.2.5.2 Pipe cover
 14.2.5.3 Trench width
 14.2.5.4 Pipe embedment
14.2.6 Foundation design and ground water control
14.2.7 Geotechnical considerations
 14.2.7.1 General
 14.2.7.2 Pipelines in engineered or controlled fill
 14.2.7.3 Pipelines in non-engineered fill
 14.2.7.4 Filling along route of pipeline
 14.2.7.5 Mine subsidence
 14.2.7.6 Slip areas
 14.2.7.7 Water-charged ground
14.2.8 Above ground crossings
14.2.9 Bulkheads and trenchstops
14.2.10 Trenchless technology
14.2.11 Pipeline anchorage
 14.2.11.1 General
 14.2.11.2 Thrust blocks
 14.2.11.3 Anchor blocks
 14.2.11.4 Restrained elastomeric seal joint pressure mains
 14.2.11.5 Restraint requirements for special situations

15 SITE INFRASTRUCTURE
15.1 ACCESS
 15.1.1 General
 15.1.2 Site requirements
 15.1.3 Access road
 15.1.4 Provisions for parking
 15.1.5 Pavement design
15.2 MAINTENANCE CLEARANCES
15.3 DRAINAGE
15.4 BUILDINGS
15.5 SITE SECURITY
15.6 CONSTRUCTION REQUIREMENTS
15.7 SIGNAGE
15.8 LANDSCAPING

16 SUPPORTING SYSTEMS
16.1 SERVICES
 16.1.1 General
 16.1.2 Water
 16.1.3 Telephone / Telemetry lines
 16.1.4 General lighting and power
16.2 VACUUM STATION FIXTURES
 16.2.1 Water closet
 16.2.2 Wash trough
 16.2.3 Work bench
16.3 MATERIALS HANDLING
 16.3.1 Lifting equipment
 16.3.2 Handling and storage of hazardous material
16.4 SECURITY
16.5 FIRE CONTROL
17 HEALTH AND SAFETY
17.1 GENERAL
17.2 HAZARDS
17.3 HEALTH AND SAFETY
 17.3.1 General
 17.3.2 Working at heights
17.4 CONFINED SPACES

18 DESIGN REVIEW

19 DESIGN DOCUMENTATION AND DRAWINGS
19.1 DOCUMENTATION
 19.1.1 General
 19.1.2 Risk assessment
 19.1.3 Operation and maintenance requirements
 19.1.4 Contingency plans
 19.1.5 Design records
 19.1.6 Resources
 19.1.7 Approvals and conditions
19.2 DESIGN DRAWINGS
 19.2.1 General
 19.2.2 Real property information
 19.2.3 Sewers
 19.2.4 Structures
 19.2.5 Vacuum stations
 19.2.6 Pressure mains
 19.2.7 Longitudinal sections (profiles)
 19.2.8 Title block notation and standard notes
 19.2.9 Other
 19.2.10 Electrical and telemetry
19.3 DRAFTING STANDARDS
 19.3.1 General
 19.3.2 Scale
 19.3.3 Recording of as-constructed information

TABLES
Table 1.1 Typical Asset Design Life
Table 3.1 Clearances Between Pipelines and Underground Services
Table 5.1 Design Flows for PN 12 PVC-U Vacuum Sewers
Table 5.2 Design Flows for Series 1 PN 12 PVC-M Vacuum Sewers
Table 5.3 Design Flows for PN 10 80 (SDR 13.6) Vacuum Sewers
Table 5.4 Default Design Air-to-Liquid Ratios
Table 8.1 Typical Local and Remote Alarms
Table 9.1 Lift Lengths, Heights and Falls for PVC-U and PVC-M Vacuum Sewers
Table 9.2 Lift Lengths, Heights and Falls for PE Vacuum Sewers
Table 14.1 Requirements for Bulkheads and Trenchstops

COPYRIGHT
<table>
<thead>
<tr>
<th>FIGURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure I</td>
</tr>
<tr>
<td>Figure II</td>
</tr>
<tr>
<td>Figure 1.1</td>
</tr>
<tr>
<td>Figure 2.1</td>
</tr>
<tr>
<td>Figure 3.1</td>
</tr>
<tr>
<td>Figure 3.2</td>
</tr>
<tr>
<td>Figure 3.3</td>
</tr>
<tr>
<td>Figure 6.1</td>
</tr>
<tr>
<td>Figure 9.1</td>
</tr>
<tr>
<td>Figure 9.2</td>
</tr>
<tr>
<td>Figure 9.3</td>
</tr>
<tr>
<td>Figure 9.4</td>
</tr>
<tr>
<td>Figure 9.5</td>
</tr>
<tr>
<td>Figure 9.6</td>
</tr>
<tr>
<td>Figure 9.7</td>
</tr>
<tr>
<td>Figure 10.1</td>
</tr>
</tbody>
</table>
CONTENTS

20 PRODUCTS AND MATERIALS OVERVIEW
 20.1 PURPOSE
 20.2 SCOPE
 20.3 RESPONSIBILITIES
 20.3.1 Water Agency
 20.3.2 Designer
 20.3.3 Constructor
 20.3.4 Purchaser
 20.4 PRODUCT AND MATERIAL STANDARDS AND SPECIFICATIONS
 20.4.1 Product standards
 20.4.2 Product specifications
 20.5 QUALITY ASSURANCE
 20.5.1 Default requirement
 20.5.2 Additional information on quality assurance
 20.5.3 Innovative products and materials
 Disclaimer
 20.6 SELECTION GUIDE FOR PIPELINE SYSTEMS
 20.7 ADDITIONAL PRODUCT AND MATERIAL INFORMATION

TABLES
 Table 20.1 Principal Gravity Sewer Pipeline Systems Draining to Vacuum Collection Chambers
 Table 20.2 Principal Sewerage Gravity Pipeline Systems Draining to Vacuum Collection Systems
 Table 20.3 Principal Vacuum Sewer Pipeline Systems and Components
 Table 20.4 Principal Vacuum Sewer Pipeline Systems and Components - Precautions, Limitations Advantages and Disadvantages
CONTENTS

21 GENERAL
21.1 SCOPE
21.2 INTERPRETATION
22 QUALITY
22.1 QUALITY ASSURANCE
 22.1.1 General
 22.1.2 Quality management system
 22.1.3 Quality system
 22.1.4 Project management plan
 22.1.5 Inspection and test plans
 22.1.6 Quality tests
 22.1.7 Quality audits
 22.1.8 Traceability
 22.1.9 Quality records
 22.1.10 Inspection
22.2 PERSONNEL QUALIFICATIONS
23 GENERAL CONSTRUCTION
23.1 GENERAL
23.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 23.2.1 Vacuum sewers
 23.2.2 Gravity sewers
23.2.3 PRESSURE MAINS
23.3 CONTRACT INTERFACES
23.4 CUSTOMER FOCUS
 23.4.1 General
 23.4.2 Resolution of complaints
23.5 PROTECTION OF PEOPLE, PROPERTY AND ENVIRONMENT
 23.5.1 Safety of people
 23.5.2 Protection of other services
 23.5.3 Disused / Redundant sewers
 23.5.4 Road reserves or other thoroughfares
 23.5.4.1 TREATMENT OF PAVEMENTS AND OTHER SURFACES
 23.5.4.2 TRAFFIC MANAGEMENT
 23.5.4.3 CLEANLINESS OF ROADS, PATHS, ACCESES AND DRAINAGE PATHS
 23.5.4.4 STORAGE OF PRODUCTS, MATERIALS AND EQUIPMENT
 23.5.4.5 OBSTRUCTION OF STREET DRAINAGE
 23.5.5 Private and public properties
 23.5.6 Protection of the environment and heritage areas
 23.5.6.1 General
 23.5.6.2 Collection and disposal of wastes
 23.5.6.3 Protection of adjacent lands and vegetation
 23.5.6.4 Control of water pollution
 23.5.6.5 Acid sulphate and contaminated soils
 23.5.6.6 Control of noise and atmospheric pollution
23.6 AFFECTED PARTY NOTIFICATIONS
23.7 ALTERATION OF EXISTING SERVICES
23.8 SURVEY MARKS
23.9 CONSTRUCTION TOLERANCES
23.10 LATENT CONDITIONS
24 PRODUCTS, MATERIALS AND EQUIPMENT
24.1 AUTHORISED PRODUCTS AND MATERIALS
24.2 REJECTED PRODUCTS AND MATERIALS
24.3 ELECTRICAL EQUIPMENT
24.4 VACUUM GENERATORS AND SEWAGE PUMPS
24.5 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
24.6 DELIVERY AND STORAGE OF ELECTRICAL EQUIPMENT
24.7 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
24.8 VACUUM VESSELS AND MOISTURE REMOVAL VESSELS
24.9 FASTENERS
24.10 WORKS INSPECTION AND TESTING
 24.10.1 Switchboards
 24.10.2 Vacuum generators
 24.10.3 Sewage pumps
 24.10.4 Motors
 24.10.5 Vacuum vessels
 24.10.6 Moisture removal vessels
24.11 CONCRETE WORKS
 24.11.1 Delivery
 24.11.2 Transportation of concrete
 24.11.3 Formwork
 24.11.4 Reinforcement
 24.11.5 Placement
 24.11.5.1 General
 24.11.5.2 Placement in water
 24.11.6 Slump
 24.11.7 Compaction
 24.11.8 Stripping
 24.11.9 Curing
 24.11.10 Repair of blemishes
24.12 SUPPLY OF WATER TO THE WORKS
24.13 ON-SITE STOCKPILES
25 ELECTRICAL WORKS
25.1 COMPLIANCE WITH AUTHORITIES, STATUTES, REGULATIONS AND STANDARDS
25.2 SCOPE OF WORK
25.3 SUPPLY AUTHORITY REQUIREMENTS AND METERING
25.4 CONSUMER MAINS
 25.4.1 Point of supply
 25.4.2 Cable size
 25.4.3 Maximum demand
 25.4.4 Calculations to be submitted
 25.4.5 Mains in reserves
 25.4.6 Mains requirements
 25.4.7 Lead-in pole and overhead mains construction
 25.4.7.1 Lead-in pole
 25.4.7.2 Poles
 25.4.7.3 Installation of poles
 25.4.7.4 Aerial cables
 25.4.8 Underground cable installation
 25.4.8.1 General
 25.4.8.2 Location
 25.4.8.3 Excavation and bedding
 25.4.8.4 Underground cable marking
 25.4.8.5 Cable installation on poles
25.4.8.6 Road crossings

25.5 EARTHING
25.5.1 General
25.5.2 Earth circuits
25.5.3 Labelling

25.6 SWITCHBOARD INSTALLATION
25.6.1 General
25.6.2 Equipment mounting
25.6.3 Thermal derating of equipment
25.6.4 Labelling
25.6.4.1 General
25.6.4.2 Incoming mains and pump and motor detail labels
25.6.4.3 Main labels
25.6.4.4 Cubicle labels
25.6.4.5 Danger notices
25.6.4.6 Asset and equipment number labels

25.7 CIRCUITS
25.7.1 Main circuits
25.7.2 Control circuit wiring

25.8 CABLELING
25.8.1 General
25.8.2 Conduits
25.8.3 Cable protection
25.8.4 Cable trays
25.8.5 Junction boxes

25.9 INSTALLATION OF GENERATOR AND PUMP CABLES
25.9.1 Numbering of generators/pumps
25.9.2 Installation

25.10 INSTALLATION OF LEVEL SENSORS
25.10.1 General
25.10.2 Collection chamber level sensor probes
25.10.3 Vacuum vessel level sensor probes (at the vacuum station)

25.11 TERMINATIONS
25.11.1 General
25.11.2 Glands
25.11.3 Mains and pump terminations

25.12 PAINTING
25.12.1 General
25.12.2 Paint materials
25.12.3 Surface preparation
25.12.4 Painting and finish

25.13 INSTALLATION IN VALVE PITS
25.13.1 General
25.13.2 Cables

25.14 NOTIFICATION OF ELECTRICAL WORK

26 TELEMETRY SYSTEM
26.1 COMPLIANCE WITH AUTHORITIES, STATUTES, REGULATIONS AND STANDARDS
26.2 SCOPE OF WORK
26.3 HARDWARE INSTALLATION
26.4 PLC PROGRAMMING
26.5 SCADA DATABASE CONFIGURATION

27 ODOUR CONTROL SYSTEM
28 MECHANICAL INSTALLATION OF PUMPS, VACUUM GENERATORS, VALVES AND FITTINGS
28.1 GENERAL
28.2 FLANGED JOINTS
28.3 INSTALLATION OF PUMPING AND VACUUM GENERATOR UNITS
 28.3.1 General
 28.3.2 Machinery alignment
 28.3.3 Unit numbers
 28.3.4 Test tapping points
28.4 GAUGES AND RECORDERS
 28.4.1 Vacuum gauges
 28.4.2 Pressure gauges
 28.4.3 Vacuum/pressure recorder
29 METALWORK
29.1 STEELWORK
29.2 ALUMINIUM ALLOY COMPONENTS
29.3 STAINLESS STEEL COMPONENTS
29.4 FASTENERS
30 ACCESS ROAD AND HARDSTAND AREAS
30.1 GENERAL
30.2 SUBGRADE
30.3 BASECOURSE
30.4 SPRAYED BITUMINOUS SEALING
30.5 ASPHALTIC CONCRETE
30.6 TIMBER GUARDRAIL
31 RETAINING WALLS
31.1 RETAINING WALLS - TIMBER CANTILEVER
 31.1.1 General
 31.1.2 Handrails
31.2 RETAINING WALLS - CONCRETE - CRIB WALL
 31.2.1 General
 31.2.2 Foundations
 31.2.3 Cribfill and backfill
 31.2.4 Drainage
 31.2.5 Handrails
32 EXCAVATION
32.1 SAFETY
32.2 LIMITS OF EXCAVATION
32.3 EXCAVATION ACROSS IMPROVED SURFACES
32.4 EXCAVATION IN ROOT ZONES
32.5 BLASTING
32.6 SUPPORT OF EXCAVATIONS
32.7 DRAINAGE AND DEWATERING
32.8 FOUNDATIONS AND FOUNDATION STABILISATION
32.9 SURPLUS EXCAVATED MATERIAL
33 BEDDING FOR PIPES, BENDS, COLLECTION CHAMBERS AND MAINTENANCE STRUCTURES
33.1 TRENCH FLOOR PREPARATION
33.2 BEDDING MATERIALS
33.3 PLACEMENT OF BEDDING
33.4 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS
33.5 BEDDING FOR PIPES AND BENDS
33.6 BEDDING FOR COLLECTION CHAMBERS
37 PIPE EMBEDMENT AND SUPPORT
37.1 GENERAL
37.2 EMBEDMENT MATERIALS
37.3 COMPACTION OF EMBEDMENT
 37.3.1 General
 37.3.2 Methods
 37.3.3 Compaction trials/Pre-qualification of embedment compaction method
 37.3.3.1 General
 37.3.3.2 Test method
 37.3.3.3 Interpretation and applicability
 37.3.4 Compaction control
37.4 SPECIAL BEDDING AND EMBEDMENTS/GEOTEXTILE SURROUND AND PILLOW
37.5 REMOVAL OF TRENCH SUPPORTS
37.6 CONCRETE EMBEDMENT AND ENCASEMENT
38 FILL
38.1 TRENCH FILL
38.2 GENERAL
38.3 MATERIAL REQUIREMENTS
38.4 COMPACTION OF TRENCH FILL
38.5 EMBANKMENT FILL
38.6 DRIVES AND TUNNEL FILL
39 CONNECTION TO EXISTING VACUUM AND GRAVITY SEWERS
40 RESTORATION
40.1 GENERAL
40.2 PAVEMENTS
40.3 LAWNS
40.4 GRASSED AREAS
40.5 BUSHLAND
40.6 PROVISION FOR SETTLEMENT
40.7 MAINTENANCE OF RESTORED SURFACES
41 ACCEPTANCE TESTING
41.1 PIPELINES
41.2 VISUAL EXTERNAL INSPECTION
41.3 COMPACTION TESTING
 41.3.1 General
 41.3.2 Minimum compaction
 41.3.3 Embedment compaction testing
 41.3.3.1 Applicable pipe sizes
 41.3.3.2 Frequency and location of embedment tests
 41.3.3.3 Retesting
 41.3.4 Trench fill compaction testing
 41.3.4.1 Trafficable Test Zone
 41.3.4.2 Non-trafficable test zone
 41.3.4.3 Test method
 41.3.4.4 Frequency and location of tests
 41.3.4.5 Retesting
 41.3.5 Other fill compaction testing
 41.3.5.1 General
 41.3.5.2 Trafficable test zone
 41.3.5.3 Non-trafficable test zone
 41.3.5.4 Frequency and location of tests
 41.3.5.5 Retesting
41.4 VACUUM TESTING OF VACUUM SEWERS AND SERVICE CONNECTIONS
41.4.1 General
41.4.2 Vacuum test equipment
41.4.3 Daily vacuum test
41.4.4 Complete sewer vacuum test
41.4.5 Identification and repair of leaks and retesting

41.5 AIR PRESSURE AND VACUUM TESTING OF GRAVITY SEWERS
41.5.1 General
41.5.2 Air testing methods for sewers
 41.5.2.1 Vacuum testing
 41.5.2.2 Low pressure air testing
41.5.3 Testing of concrete MHs
 41.5.3.1 General
 41.5.3.2 Test method

41.6 HYDROSTATIC PRESSURE TESTING OF PRESSURE MAINS
41.6.1 General
41.6.2 System test pressure
41.6.3 Maximum allowable loss
41.6.4 Test procedure
41.6.5 Satisfactory pressure test
41.6.6 Failure of test

41.7 INFILTRATION TESTING

41.8 DEFLECTION (OVALLITY) TESTING OF FLEXIBLE GRAVITY SEWERS
 41.8.1 General
 41.8.2 Ovality proving tools
 41.8.3 Flexible sewers ≤DN 300

41.9 CCTV INSPECTION

42 COMMISSIONING
42.1 GENERAL
42.2 VACUUM STATION
 42.2.1 Requirements
 42.2.2 Pre-commissioning
 42.2.3 Commissioning
 42.2.4 Handover
42.3 SYSTEM VACUUM TEST
42.4 POWER FAILURE TEST
42.5 ODOR CONTROL SYSTEM
 Signed off
 Signed-Off by Water Agency

43 TOLERANCES ON AS-CONSTRUCTED WORK
43.1 HORIZONTAL TOLERANCES
 43.1.1 Sewers, mains, valves, in-line structures, vacuum stations, roads
 43.1.2 Property connection sewers
43.2 VERTICAL TOLERANCES
 43.2.1 Vacuum sewers, pressure mains, structures, vacuum stations, roads
 43.2.2 Property connection risers and inspection openings
 43.2.3 Grade
43.3 VERTICALITY ("PLUMB")
43.4 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
43.5 CAST IN-SITU CONCRETE STRUCTURES AND SLABS
44 WORK AS CONSTRUCTED DETAILS
44.1 GENERAL
44.2 ELECTRICAL WORKS
44.2.1 Electrical contractors installation drawings
44.2.2 Principal supplied installation drawings and equipment schedules

TABLES
Table 25.1 Control Circuit Wiring Insulation Colour Coding
Table 30.1 Timber Guardrail Default Construction Dimensions
Table 31.1 Retaining Wall Default Construction Dimensions
Table 31.2 Timber Handrail Default Construction Dimensions
Table 34.1 Methods of Achieving Curved Pipelines
Table 37.1 Maximum Particle Size
Table 41.1 Order of Acceptance Testing
Table 41.2 Minimum Compaction of Embedment and Trench/ Embankment/Other Fills
Table 41.3 Pressure and Vacuum Air Testing Acceptance Times for 7 kPa Pressure Change
Table 41.4 Concrete MH Testing Frequency
Table 41.5 Minimum Test Times for Concrete MHs
Table 43.1 Sewer Grade Tolerances
Table 43.2 Property Connection Sewer Grade Tolerances

FIGURES
Figure 42.1 Typical Pre-Commissioning and Commissioning Process
Figure 42.2 Typical Handover to Water Agency
CONTENTS

45 INTRODUCTION
 45.1 GENERAL
 45.2 DRAWING COMMENTARY

46 LISTING OF STANDARD DRAWINGS

47 COMMENTARY ON VAC–1100 SERIES – VACUUM SEWERS
 47.1 GENERAL
 47.2 VAC–1100 – VACUUM SEWER PROFILE
 47.3 VAC–1101 – VACUUM SEWER DETAILS – PVC
 47.4 VAC–1102 – VACUUM SEWER DETAILS – PE

48 COMMENTARY ON VAC–1200 SERIES – COLLECTION CHAMBERS
 48.1 GENERAL
 48.2 VAC–1200 – VAC 1203 COLLECTION CHAMBERS WITH SINGLE OR DOUBLE VACUUM INTERFACE VALVES
 48.3 VAC–1204 – COLLECTION CHAMBERS >2.4 M DEEP – TYPICAL LANDING DETAILS
 48.4 VAC–1205 – COLLECTION CHAMBER WITH EMERGENCY STORAGE PIPE – TYPICAL ARRANGEMENTS
 48.5 VAC–1206 – COLLECTION CHAMBER – SERVICE CONNECTION – PIPE PENETRATION - PROPERTY CONNECTION LAYOUT

49 COMMENTARY ON –1300 SERIES – VACUUM STATIONS
 49.1 GENERAL
 49.2 VAC–1300 – VACUUM STATION LAYOUT – HORIZONTAL VACUUM VESSEL
 49.3 VAC–1301 – VACUUM STATION LAYOUT – VERTICAL VACUUM VESSEL

50 COMMENTARY ON VAC–1400 SERIES DRAWINGS – EMBEDMENT, TRENCH FILL AND RESTRAINTS
 50.1 GENERAL
 50.2 MAXIMUM DEPTH TO INVERT FOR STANDARD SUPPORT TYPES
 50.3 VAC–1400 – SOIL CLASSIFICATION GUIDELINES
 50.4 VAC–1401 – EMBEDMENT AND TRENCHFILL – TYPICAL ARRANGEMENTS
 50.5 VAC–1402 – STANDARD EMBEDMENT – FLEXIBLE AND RIGID PIPES
 50.6 VAC–1403 – SPECIAL EMBEDMENTS – INADEQUATE AND POOR FOUNDATION
 50.7 VAC–1404 – SPECIAL EMBEDMENT CONCRETE AND STABILISED SUPPORTS
 50.8 SEW–1204 – SPECIAL EMBEDMENT SUPPORT USING PILES
 50.9 SEW–1206 – BULKHEADS AND TRENCHSTOP
 50.10 SEW–1207 – TRENCH DRAINAGE TYPICAL SYSTEMS
 50.11 SEW–1208 – VERTICALS AND NEAR VERTICALS EXPOSED AND CONCEALED METHODS
 50.12 WAT–1205 – THRUST BLOCK DETAILS – CONCRETE BLOCKS
 50.13 WAT–1206 – THRUST BLOCK DETAILS – TIMBER & RECYCLED PLASTIC BLOCKS
 50.14 WAT–1207 – THRUST AND ANCHOR BLOCKS – GATE VALVES AND VERTICAL BENDS
 50.15 WAT–1208 – RESTRAINED JOINT SYSTEM – DN 100 TO DN 375 DI MAINS
 50.16 WAT–1209 – TRENCH DRAINAGE – BULKHEADS AND TRENCHSTOP
 50.17 WAT–1210 – TRENCH DRAINAGE – TYPICAL SYSTEMS
 50.18 WAT–1211 TO WAT–1214 – BURIED CROSSINGS

51 PROPERTY CONNECTION DETAILS
 51.1 GENERAL
 51.2 SEW–1104 AND SEW–1105 – PROPERTY CONNECTION DETAILS
 51.3 SEW–1106 AND SEW–1107 – PROPERTY CONNECTION DETAILS – METHODS
 51.4 SEW–1106 – IO INTERFACE METHOD
 51.5 SEW–1107 – BURIED INTERFACE METHOD

COPYRIGHT
52 COMMENTARY ON SEW–1300 SERIES – ACCESS STRUCTURES

52.1 GENERAL
52.2 SEW–1300 – SEWERS ≤DN 300 PRECAST MH TYPES P1 AND P2
52.3 SEW–1301 – CAST IN-SITU MH TYPES C1 AND C2
52.4 SEW–1302 – MH PIPE CONNECTION DETAILS
52.5 SEW–1303 – SEWERS ≤DN 300 MH CHANGE IN LEVEL ARRANGEMENTS
52.6 SEW–1304 AND SEW–1305 – MH CHANNEL ARRANGEMENTS AND DETAILS
52.7 SEW–1306 – ALTERNATIVE MH DROP CONNECTIONS
52.8 SEW–1307 – STEP IRONS AND LADDERS
52.9 SEW–1308 – TYPICAL MH COVER ARRANGEMENTS
52.10 SEW–1313 TO SEW–1316 INCLUSIVE – MAINTENANCE SHAFTS
52.11 SEW–1317 – MH CONNECTION DETAILS PE PIPE

53 COMMENTARY ON SEW–1400 SERIES – SPECIAL CROSSINGS / STRUCTURES ARRANGEMENTS

53.1 GENERAL
53.2 SEW–1400 – SYPHON ARRANGEMENT
53.3 SEW–1401 TO SEW–1403 INCLUSIVE – BURIED CROSSINGS
53.4 SEW–1406 – BRIDGE CROSSING

54 COMMENTARY ON WAT–1300 SERIES – INSTALLATION PRACTICES

54.1 GENERAL
54.2 WAT–1303 TO WAT–1306 – TYPICAL SURFACE FITTING INSTALLATION
54.3 WAT–1307 – TYPICAL APPURTENANCE (SCOUR) INSTALLATION
54.4 WAT–1308 AND WAT–1309 – TYPICAL APPURTENANCE (VALVE) INSTALLATION
54.5 WAT–1310 TO WAT–1312 – AERIAL CROSSINGS
54.6 WAT–1313 – FLANGED JOINTS

55 COMMENTARY ON WAT–1400 SERIES – FABRICATION DETAILS

55.1 GENERAL
55.2 WAT–1400 – TYPICAL STEEL PIPE JOINTING – BUTT WELDING OF JOINTS
55.3 WAT–1401 – TYPICAL STEEL PIPE JOINTING – RRJ SPIGOT BANDS
55.4 WAT–1402 – TYPICAL STEEL PIPE JOINTING – WELDED PIPE COLLARS
55.5 WAT–1403 – TYPICAL STEEL FABRICATION – BENDS
55.6 WAT–1404 – TYPICAL STEEL FABRICATION – ACCESS OPENINGS
55.7 WAT–1408 – JOINT CORROSION PROTECTION
55.8 WAT–1409 – HYDRANT INSTALLATION FITTINGS – PE ASSEMBLIES

TABLES
Table 50.1 Maximum Depth to Invert for PVC Sewers
Table 50.2 Maximum Depth to Invert for GRP Sewers
Table 50.3 Maximum Depth to Invert for VC Sewers
Table 50.4 Maximum Particle Size
Table 51.1 Minimum Reticulation and Property Connection Sewer Sizes
Table 51.2 Equivalent Stiffness Classes for PVC Sewers