Gravity Sewerage Code of Australia

WSA 02—2014-3.1

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 2
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS</td>
<td></td>
</tr>
<tr>
<td>I Glossary of Terms</td>
<td>15</td>
</tr>
<tr>
<td>II Abbreviations</td>
<td>30</td>
</tr>
<tr>
<td>III Referenced Documents</td>
<td>34</td>
</tr>
<tr>
<td>PART 1: PLANNING AND DESIGN</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>40</td>
</tr>
<tr>
<td>1 General</td>
<td>50</td>
</tr>
<tr>
<td>2 System Planning</td>
<td>61</td>
</tr>
<tr>
<td>3 Flow Estimation</td>
<td>70</td>
</tr>
<tr>
<td>4 Products and Materials</td>
<td>72</td>
</tr>
<tr>
<td>5 Detail Design</td>
<td>84</td>
</tr>
<tr>
<td>6 Property Connection</td>
<td>116</td>
</tr>
<tr>
<td>7 Maintenance Structures</td>
<td>119</td>
</tr>
<tr>
<td>8 Ancillary Structures</td>
<td>137</td>
</tr>
<tr>
<td>9 Structural Design</td>
<td>150</td>
</tr>
<tr>
<td>10 Design Review and Drawings</td>
<td>161</td>
</tr>
<tr>
<td>PART 2: CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>168</td>
</tr>
<tr>
<td>11 General</td>
<td>174</td>
</tr>
<tr>
<td>12 General Construction</td>
<td>176</td>
</tr>
<tr>
<td>13 Products and Materials</td>
<td>184</td>
</tr>
<tr>
<td>14 Excavation</td>
<td>188</td>
</tr>
<tr>
<td>15 Bedding for Pipes and Maintenance Structures</td>
<td>193</td>
</tr>
<tr>
<td>16 Pipe Laying and Jointing</td>
<td>195</td>
</tr>
<tr>
<td>17 Maintenance Holes (MHs)</td>
<td>205</td>
</tr>
<tr>
<td>18 Maintenance Chambers (MC), Maintenance Shafts (MS) and Inspection Shafts (IS)</td>
<td>208</td>
</tr>
<tr>
<td>19 Pipe Embedment and Support</td>
<td>209</td>
</tr>
<tr>
<td>20 Fill</td>
<td>212</td>
</tr>
<tr>
<td>21 Acceptance Testing</td>
<td>215</td>
</tr>
<tr>
<td>22 Tolerances on As-Constructed Work</td>
<td>240</td>
</tr>
<tr>
<td>23 Connections to Existing Sewers</td>
<td>242</td>
</tr>
<tr>
<td>24 Restoration</td>
<td>243</td>
</tr>
<tr>
<td>25 Work As Constructed Details</td>
<td>245</td>
</tr>
</tbody>
</table>
Gravity Sewerage Code of Australia
WSA 02—2014-3.1

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 2

Part 1: Planning and Design
CONTENTS

1 GENERAL
 1.1 SCOPE
 1.2 PLANNING AND DESIGN
 1.2.1 Objectives
 1.2.2 Scope and requirements
 1.2.3 Servicing strategies
 1.2.4 Functional design requirements
 1.2.5 Concept plan format
 1.2.6 Critical infrastructure protection
 1.2.6.1 General
 1.2.6.2 Asset categorisation
 1.2.6.3 All hazards – Infrastructure protection
 1.2.7 Detailed design
 1.2.7.1 Designer’s needs and responsibilities
 1.2.7.2 Requirements to be addressed
 1.2.7.3 Design outputs
 1.2.7.4 Safety in design
 1.3 CONSULTATION WITH OTHER PARTIES
 1.3.1 Design life
 1.3.2 Instrumentation and control systems

2 SYSTEM PLANNING
 2.1 GENERAL
 2.2 SEWER SYSTEM PHILOSOPHY AND DEFINITION
 2.2.1 Disaggregation
 2.2.2 Level 1 Total system
 2.2.3 Level 2 Transportation subsystems
 2.2.4 Level 3 operating units
 2.2.4.1 Sewers
 2.2.4.2 Sewage pumping stations (SPSs)
 2.2.4.3 Storage
 2.3 PLANNING PRINCIPLES
 2.3.1 Planning horizon
 2.3.2 Concept plan
 2.3.3 Catchment analysis
 2.3.4 Provision for future gauging needs
 2.4 PLANNING PARAMETERS
 2.4.1 Loading per serviced lot
 2.4.2 Estimating future catchment loads
 2.4.3 Estimating existing system loads
 2.4.4 Climate change impacts
 2.4.5 Environmental, cultural and heritage impacts
 2.4.6 Geotechnical investigations
 2.4.7 Contaminated sites
 2.4.8 Operations and maintenance considerations
 2.4.9 Sewer mining
 2.5 SEWAGE QUALITY
 2.5.1 Septicity
 2.5.2 Australian sewage quality management guidelines
 2.6 PLANNING REVIEW

3 FLOW ESTIMATION
 3.1 GENERAL
 3.2 DESIGN FLOW ESTIMATION
 3.3 DESIGN FLOW ESTIMATION METHOD
 3.3.1 General
3.3.2 Traditional design flow estimation method
3.3.3 Design flow estimation incorporating existing systems
3.3.4 Design flow estimation—Partially pumped systems
3.3.5 Flow schedule

4 PRODUCTS AND MATERIALS
4.1 GENERAL
4.2 IDENTIFICATION OF SEWER SYSTEMS
4.3 SERVICABILITY OF SEWER SYSTEMS
4.4 PROTECTION AGAINST DEGRADATION
4.5 DUCTILE IRON GRAVITY SEWERS
 4.5.1 Product Specifications
 4.5.2 Sizes and configurations
 4.5.3 Cement mortar lining
 4.5.4 Sleeving
4.6 PVC GRAVITY SEWERS
 4.6.1 Product Specifications
 4.6.2 Sizes and configurations
4.7 POLYETHYLENE GRAVITY SEWERS
 4.7.1 Product Specifications
 4.7.2 Sizes and configurations
4.8 POLYPROPYLENE GRAVITY SEWERS
 4.8.1 Product Specifications
 4.8.2 Sizes and configurations
4.9 GRP GRAVITY SEWERS
 4.9.1 Product Specifications
 4.9.2 Sizes and configurations
4.10 PLASTICS-LINED CONCRETE GRAVITY SEWERS
 4.10.1 Product Specifications
 4.10.2 Sizes and configurations
4.11 VITRIFIED CLAY SEWERS
 4.11.1 Product Specifications
 4.11.2 Sizes and configurations
4.12 STEEL GRAVITY SEWERS
 4.12.1 Product Specifications
 4.12.2 Sizes and configurations
 4.12.3 Joints
 4.12.4 Field welding
 4.12.5 Flanged joints
4.13 MAINTENANCE STRUCTURES
 4.13.1 Product Specifications
 4.13.2 Classification and application
 4.13.3 Sizes and configurations
4.14 MARKING TAPES
 4.14.1 Product Specifications
 4.14.2 Application
4.15 ACCESS COVERS AND FRAMES
 4.15.1 Product Specifications
 4.15.2 Application
 4.15.3 Cast iron access covers and frames
 4.15.4 Macro-composite access covers and frames
 4.15.5 Thermoplastic access covers and frames
 4.15.6 Size and configuration
 4.15.7 Marking of access covers and frames
4.16 VENT SHAFTS
 4.16.1 Product Specifications
 4.16.2 Application
5 DETAIL DESIGN

5.1 DETAIL DESIGN PROCESS

5.2 DETAIL DESIGN CONSIDERATIONS

5.2.1 Catchment design
5.2.2 Design accuracy
5.2.3 Sewer layout
5.2.4 Location of sewers
 5.2.4.1 General
 5.2.4.2 Sewers located along front or side boundaries
 5.2.4.3 Sewers located along rear boundaries
 5.2.4.4 Not used
 5.2.4.5 Sewers servicing industrial/commercial lots
 5.2.4.6 Branch and trunk sewers
MRWA 5.2.4.7 Sewers located in public open space
MRWA 5.2.4.8 Sewers located in road reserves
MRWA 5.2.4.9 Sewers servicing Owners Corporations/multi-unit development sites
5.2.5 Trenchless techniques for pipe installation
5.2.6 Boreholes and tunnels
 5.2.6.1 General
 5.2.6.2 Design requirements
 5.2.6.3 Silt traps
5.2.7 Environmental, cultural and heritage considerations
 5.2.7.1 General
 5.2.7.2 Urban salinity
 5.2.7.3 Acid sulphate soils
 5.2.7.4 Vegetation
 5.2.7.5 Coastal zones
5.2.8 Easements
5.2.9 Disused sewers
5.2.10 Special design considerations

5.3 HORIZONTAL ALIGNMENT OF SEWERS

5.3.1 General
5.3.2 Roads, reserves and open space
5.3.3 Railway reserves
5.3.4 Waterways
5.3.5 Maintenance structures and vent shafts
5.3.6 Changes in direction using an MH
5.3.7 Changes in direction using an MS or MC
5.3.8 Horizontal curves in sewers
 5.3.8.1 General
 5.3.8.2 Use of manufactured and variable bends in reticulation sewers
 5.3.8.3 Cumulative deflection using pipe joints

5.4 OBSTRUCTIONS AND CLEARANCES

5.4.1 General
5.4.2 Surface obstructions
5.4.3 Clearance from transmission towers and power lines
5.4.4 Clearance from structures
5.4.5 Underground obstructions and services
 5.4.5.1 General
 5.4.5.2 Clearance requirements
5.4.6 Marker posts

5.5 PIPE SIZING AND GRADING

5.5.1 General
5.5.2 Environmental protection requirements
5.5.3 Minimum air space
5.5.4 Minimum pipe sizes for maintenance purposes
5.5.5 Maximum ET for reticulation sewers
 5.5.5.1 General
 5.5.5.2 Design assumptions
5.5.6 Limitation on sewer size reduction
5.5.7 Minimum grades for self-cleansing
 5.5.7.1 General
 5.5.7.2 Reticulation sewers
 5.5.7.3 Property connection sewers
5.5.8 Minimum grades for slime control
5.5.9 Maximum grades
 5.5.9.1 Branch and trunk sewers
 5.5.9.2 Reticulation sewers
5.6 VERTICAL ALIGNMENT OF SEWERS
 5.6.1 General
 5.6.2 Long section design plan
 5.6.3 Minimum cover over sewers
 5.6.4 Lot servicing requirements
 5.6.4.1 General
 5.6.4.2 Serviced area requirements for residential lots
 5.6.4.3 Serviced area requirements for industrial and commercial lots
 5.6.4.4 Partial lot service
 5.6.4.5 Servicing of basements
 5.6.4.6 Servicing of existing areas (e.g. backlog or brown fields development)
5.6.5 Property connection levels and type selection
 5.6.5.1 General
 5.6.5.2 Not used
 5.6.5.3 Calculating the level of the connection point
 5.6.5.4 Selecting the reticulation sewer levels and property connection type
5.6.6 Grading through MHs
 5.6.6.1 General
 5.6.6.2 Internal fall through MHs joining sewers of same diameter
 5.6.6.3 Internal falls through MHs joining sewers of different diameters
 5.6.6.4 Major sewer junctions
 5.6.6.5 Large falls at MHs
 5.6.6.6 Avoiding hydraulic jumps due to steep grades
 5.6.6.7 Avoiding deep channels in MHs due to steep grades
5.6.7 Vertical curves in sewers
5.6.8 Compound curves

6 PROPERTY CONNECTION
 6.1 GENERAL
 6.2 LIMITATIONS OF CONNECTION TO SEWERS
 6.3 METHODS OF THE PROPERTY CONNECTION
 6.3.1 General
 6.3.2 Not used
 6.3.3 Buried interface method
 6.3.4 Typical layouts of sewers and general arrangements for property connection sewers
 6.3.5 Maximum depth of property connection point
 6.4 NUMBER OF PROPERTY CONNECTION POINTS
 6.4.1 Single occupancy lots
 6.4.2 Multiple occupancy lots
 6.5 PROPERTY CONNECTION SEWERS
 6.5.1 General
 6.5.2 Not used
6.5.3 Lots with existing buildings

6.6 NOT USED

6.6.1 Not used

6.6.2 Not used

6.7 NOT USED

7 MAINTENANCE STRUCTURES

7.1 TYPES OF MAINTENANCE STRUCTURES

7.2 LOCATIONS OF MAINTENANCE STRUCTURES

7.3 SPACING OF MAINTENANCE STRUCTURES

7.3.1 General

7.3.2 Maintenance structure spacing—Reticulation sewers

7.3.3 Maintenance structure spacing—Branch and trunk sewers

7.4 SPECIAL CONSIDERATIONS FOR LOCATION OF MAINTENANCE STRUCTURES

7.5 SPECIAL CONSIDERATIONS FOR CONNECTION OF NEW SEWERS TO EXISTING SEWERS

7.6 MAINTENANCE HOLES (MHS)

7.6.1 General

7.6.2 Types of MH construction

7.6.3 Design parameters for MHS

7.6.4 Design requirements for connection of sewers to MHS

7.6.4.1 Pre-cast concrete MH base units

7.6.4.2 Cast in-situ concrete MH base units

7.6.4.3 Rocker pipes

7.6.5 Connection of property connection sewers into MHS

7.6.6 MH drops

7.6.7 Diameters of MHS

7.6.8 MH base layout

7.6.9 Ladders, step irons and landings

7.7 MAINTENANCE SHAFTS (MSS) / MAINTENANCE CHAMBERS (MCS)

7.7.1 General

7.7.2 Design parameters for MCs and MSs

7.7.3 Connections to MCs and MSs

7.7.3.1 Connections to PE MSs

7.7.3.2 Connections to pre-cast concrete MC base units

7.7.3.3 Connections to PP MCs and MSs

7.7.4 High-level connections to MCs and MSs

7.7.4.1 High-level connections into a pre-cast concrete MC

7.7.4.2 High-level connections into a PE MC and MS

7.7.4.3 High-level connections into a PVC-U MS

7.7.4.4 High-level connections into a PP MC and MS

7.8 INSPECTION SHAFTS (ISS)

7.8.1 General

7.8.2 Terminal inspection shaft (Type A)

7.8.3 Vertical drop inspection shaft (Type B)

7.8.4 Not used

7.8.5 Ends of pipe

7.8.5.1 Temporary ends of pipe

7.8.5.2 Permanent ends of pipe

7.9 MAINTENANCE STRUCTURE COVERS

7.9.1 General

7.9.2 Cross-fall on MH covers

7.9.3 Modifications to existing maintenance holes

7.10 MAINTENANCE STRUCTURES AT JUNCTIONS

7.11 MAINTENANCE STRUCTURES AT INTERFACE OF PROPERTY CONNECTIONS AND SEWERS

8 ANCILLIARY STRUCTURES
8.1 GENERAL
8.2 WATER SEALS AND BOUNDARY TRAPS
 8.2.1 Boundary traps on sanitary drains
 8.2.1.1 General
 8.2.1.2 Responsibility for installation of boundary traps
 8.2.2 Water seals and gas check MHs
 8.2.2.1 General
 8.2.2.2 Water seals on reticulation sewers entering branch or trunk sewers
 8.2.2.3 Water seals on branch sewers entering trunk sewers
 8.2.3 Not used
 8.2.3.1 Not used
 8.2.3.2 Not used
 8.2.3.3 Gas check MHs
8.3 VERTICAL AND NEAR VERTICAL SEWERS
 8.3.1 General
 8.3.2 Design parameters for bored, exposed and encased vertical and near vertical sewers
8.4 VENTILATION
 8.4.1 General
 8.4.2 Design parameters for ventilation and location of vent shafts
 8.4.3 Design details for ventilation lines, vent shafts and cowls
8.5 VORTEX INLETS AND WATER CUSHIONS
8.6 INVERTED SYPHONS
 8.6.1 General
 8.6.2 Design parameters for inverted syphons
8.7 EMERGENCY RELIEF STRUCTURES
 8.7.1 General
 8.7.2 Design parameters for ERSs
 8.7.2.1 General
 8.7.2.2 Configuration
 8.7.2.3 Overflow pipe
 8.7.2.4 Overflow level
8.8 FLOW MEASURING DEVICES
 8.8.1 General
 8.8.2 Within the sewer system
 8.8.3 At a sewage pumping station
8.9 WET WEATHER STORAGE
 8.9.1 General
 8.9.2 Design considerations

9 STRUCTURAL DESIGN
 9.1 GENERAL
 9.2 PRODUCTS AND MATERIALS
 9.3 STRUCTURAL CONSIDERATIONS
 9.3.1 Pipes
 9.3.2 Design factors affecting buried flexible and rigid pipes
 9.3.3 Maintenance structures
 9.4 LOADINGS
 9.4.1 External forces
 9.4.2 Native soil strength
 9.4.3 Embedment zone dimensions
 9.4.4 Pipe embedment
 9.4.5 Buoyancy
 9.4.6 Flotation
 9.5 FOUNDATION DESIGN AND GROUNDWATER CONTROL
 9.5.1 Migration of fines
 9.6 GEOTECHNICAL CONSIDERATIONS
 9.6.1 General
9.6.2 Pipelines in engineered or controlled fill
9.6.3 Pipelines in non-engineered fill
9.6.4 Filling along route of pipeline
9.6.5 Mine subsidence
9.6.6 Slip areas
9.6.7 Water-charged ground

9.7 SPECIAL EMBEDMENT CONCRETE AND STABILISED SUPPORTS
9.7.1 General
9.7.2 Requirements

9.8 ABOVE GROUND CROSSINGS
9.9 PIPE COVER
9.10 BULKHEADS AND TRENCHSTOPS
9.11 TRENCH DRAINAGE

10 DESIGN REVIEW AND DRAWINGS
10.1 DESIGN REVIEW
10.2 DESIGN DRAWINGS
10.2.1 General
10.2.2 Composition of Design Drawings
10.2.3 Scale
10.2.4 Real property information
10.2.5 Sewers
10.2.6 Structures
10.2.7 Longitudinal sections (profiles)
10.2.8 Title block notation and standard notes
10.2.9 Other

10.3 SEWER SYSTEM ACRONYMS
10.4 SPECIFICATIONS
10.5 RECORDING OF WORK AS CONSTRUCTED INFORMATION

TABLES

Table 1.1 Asset Categories
Table 1.2 Typical Asset Design Life
Table 1.3 Planning and Design Approach
Table 4.1 Colour Identification of Components in Reticulation Sewer Systems
Table 4.2 Limitations of Sewage Chemistry Constituents for Use of Different Types of Cement
Table 5.1 Maximum Limit of Deviation in Level and Line of Boreholes and Tunnels
Table 5.2 Not used
Table 5.3 Not used
Table 5.4 Clearances Between Sewers and Other Underground Services
Table 5.5 Minimum Pipe Sizes for Reticulation and Property Connection Sewers
Table 5.6 Maximum and Minimum ET for Gravity Sewers for Various Locations
Table 5.7 Manning Coefficient
Table 5.8 Not used
Table 5.9 Minimum Grades for Property Connection Sewers
Table 5.10 Not used
Table 5.11 Not used
Figure 9.22 Typical Trench Drainage Around MHs
Gravity Sewerage Code of Australia

WSA 02—2014-3.1

Melbourne Retail Water Agencies Edition

(Including City West Water, South East Water & Yarra Valley Water)

Version 2

Part 2: Construction
CONTENTS

11 GENERAL
11.1 SCOPE
11.1.1 Not used
11.2 INTERPRETATION

12 GENERAL CONSTRUCTION
12.1 GENERAL
12.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
12.3 CONTRACT INTERFACES
12.4 CUSTOMER FOCUS
12.4.1 General
12.4.2 Resolution of complaints
12.5 PROTECTION OF PROPERTY AND ENVIRONMENT
12.5.1 Protection of other services
12.5.2 Road reserves or other thoroughfares
12.5.2.1 Road opening permits
12.5.2.2 Treatment of pavements and other surfaces
12.5.2.3 Cleanliness of roads, paths, accesses and drainage paths
12.5.2.4 Storage of products, materials, equipment and excavated material
12.5.2.5 Obstruction of street drainage
12.5.3 Private and public lands
12.5.4 Protection of the environment and heritage areas
12.5.4.1 General
12.5.4.2 Collection and disposal of wastes
12.5.4.3 Protection of adjacent lands and vegetation
12.5.4.4 Control of water pollution
12.5.4.5 Contaminated soils
12.5.4.6 Control of noise and atmospheric pollution
12.5.4.7 Equipment and machinery use in bush fire prone areas
12.5.4.8 Work within high risk fire areas

12.6 DISUSED SEWERS
12.7 OPERATION OF WATER SUPPLY NETWORK
12.8 ALTERATION OF EXISTING SERVICES
12.9 SURVEY MARKS
12.10 CONSTRUCTION TOLERANCES
12.11 LATENT CONDITIONS

13 PRODUCTS AND MATERIALS
13.1 APPROVED PRODUCTS AND MATERIALS
13.2 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
13.3 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
13.3.1 General
13.3.2 Transportation
13.3.3 Unloading and handling
13.3.4 On-site storage
13.3.5 Plastics-lined concrete products
13.3.6 Coiled plastics pipe
13.4 CONCRETE WORKS
13.5 SUPPLY OF WATER TO THE WORKS

14 EXCAVATION
14.1 PRECAUTIONS
14.2 LIMITS OF CLEARING AND EXCAVATION
14.3 PROTECTION OF TREES
14.3.1 General precautions
14.3.2 Protection of roots
14.4 BLASTING
14.5 SUPPORT OF EXCAVATIONS
14.6 DRAINAGE AND DEWATERING
14.7 EXCAVATION ACROSS IMPROVED SURFACES
14.8 TRENCH EXCAVATION
 14.8.1 General
 14.8.2 Construction of embankment
 14.8.3 Clearances for on-site works
14.9 REFILL OF EXCESSIVE EXCAVATION
14.10 FOUNDATIONS AND FOUNDATION STABILISATION
14.11 SURPLUS EXCAVATED MATERIAL
14.12 EXCAVATION AND PIPELAYING USING TRENCHLESS TECHNIQUES

15 BEDDING FOR PIPES AND MAINTENANCE STRUCTURES
 15.1 TRENCH FLOOR PREPARATION
 15.2 BEDDING MATERIALS
 15.2.1 Placement of bedding
 15.3 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS
 15.4 BEDDING FOR MAINTENANCE CHAMBERS, MAINTENANCE SHAFTS, INSPECTION SHAFTS AND BENDS
 15.5 BEDDING FOR MAINTENANCE HOLES

16 PIPE LAYING AND JOINTING
 16.1 INSTALLATION OF PIPES
 16.1.1 General
 16.1.2 Cleaning, inspection and joint preparation
 16.1.3 Coiled plastics pipes
 16.1.4 Laying
 16.2 HORIZONTAL AND VERTICAL DEFLECTION OF SEWERS
 16.2.1 General
 16.2.2 Methods of deflection
 16.2.3 Horizontal curves
 16.2.4 Vertical curves
 16.2.5 Compound curves
 16.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
 16.4 FLOTATION CONTROL
 16.5 TRENCH STOPS
 16.6 BULKHEADS
 16.7 PROPERTY CONNECTION SEWERS
 16.8 DEAD ENDS
 16.9 MARKING OF PROPERTY CONNECTION SEWERS AND DEAD ENDS
 16.10 CORROSION PROTECTION OF CAST IRON
 16.11 MARKERS
 16.11.1 Non-detectable marking tape
 16.11.2 Detectable marking tape
 MRWA 16.11.3 Marker posts
 16.12 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
 16.13 AQUEDUCTS
 16.14 BRIDGE CROSSINGS
 16.15 PLASTICS-LINED RC PIPE JOINTING
 16.15.1 General
 16.15.2 Plastics lining work protection
 16.15.3 Field jointing
 16.15.4 Plastics lining ancillary work
 16.15.4.1 Alignment of lining keys
 16.15.4.2 Provision of seepage channels
 16.15.4.3 Use of jointing accessories and adhesives
16.16 WELDING OF STEEL PIPELINES
16.16.1 General
16.16.2 Not used
16.16.3 Not used
16.16.4 Not used
16.16.4.1 Not used
16.16.4.2 Not used
16.16.4.3 Not used
16.16.4.4 Not used
16.16.5 Not used
16.16.5.1 Not used
16.16.5.2 Not used
16.16.5.3 Not used
16.16.5.4 Not used
16.16.5.5 Not used
16.16.5.6 Not used

16.17 WELDING OF PE PIPELINES
16.17.1 General
16.17.2 Welder qualifications
16.17.3 Connections to pipes of other materials
MRWA 16.17.4 Butt welding
MRWA 16.17.5 Electrofusion welding
MRWA 16.17.6 Extrusion welding

17 MAINTENANCE HOLES (MHS)
17.1 GENERAL
17.2 CONCRETE MHS
17.2.1 Concrete MH base
17.2.2 Pre-cast concrete MH systems
17.2.3 Cast in-situ concrete MH
17.2.4 Benching and channels
17.2.5 Concreting for thermoplastics-lined works
17.2.5.1 Concrete work planning
17.2.5.2 Fixing of thermoplastics lining for concrete work
17.2.5.3 Concrete placement and formwork removal
17.2.6 Internal coating of concrete MHs
17.3 GLASS REINFORCED PLASTICS (GRP) MHS
17.4 POLYETHYLENE (PE) MHS
17.5 POLYPROPYLENE (PP) MHS
17.6 TRENCH DRAINAGE AROUND MHS
17.7 COVERS
17.8 CONNECTIONS TO MHS
17.9 MH DROPS
17.10 LADDERS, STEP IRONS AND LANDINGS

18 MAINTENANCE CHAMBERS (MC), MAINTENANCE SHAFTS (MS) AND INSPECTION SHAFTS (IS)
18.1 GENERAL
18.2 SEALING CAPS
18.3 COVERS
18.4 CONNECTIONS TO MCS AND MSS

19 PIPE EMBEDMENT AND SUPPORT
19.1 GENERAL
19.2 EMBEDMENT MATERIALS
19.3 COMPACTION OF EMBEDMENT
19.3.1 Methods
19.3.2 Compaction trials / Pre-qualification of embedment compaction method
19.3.2.1 General
19.3.2.2 Test method
19.3.2.3 Interpretation and applicability
19.3.3 Compaction control
19.4 SPECIAL BEDDING AND EMBEDMENTS / GEOTEXTILE SURROUND AND PILLOW
19.5 REMOVAL OF TRENCH SUPPORTS
19.6 CONCRETE EMBEDMENT AND ENCASEMENT

20 FILL
20.1 TRENCH FILL
20.1.1 General
20.1.2 Material requirements
20.1.2.1 Trafficable areas
20.1.2.2 Non-trafficable areas
20.1.3 Placement
20.1.4 Compaction of trench fill
20.2 EMBANKMENT FILL
20.3 DRIVES AND TUNNEL FILL

21 ACCEPTANCE TESTING
21.1 GENERAL
21.2 VISUAL INSPECTION—ABOVE-GROUND
21.3 COMPACTION TESTING
21.3.1 General
21.3.2 Not used
21.3.2.1 Not used
21.3.3 Embedment compaction testing
21.3.3.1 Applicability
21.3.3.2 Frequency and location of embedment tests
21.3.3.3 Retesting
21.3.4 Trench fill compaction testing
21.3.4.1 Not used
21.3.4.2 Not used
21.3.4.3 Not used
21.3.4.4 Not used
21.3.4.5 Not used
21.3.5 Other fill compaction testing
21.3.5.1 Not used
21.3.5.2 Not used
21.3.5.3 Not used
21.3.5.4 Not used
21.3.5.5 Not used
21.4 AIR PRESSURE AND VACUUM TESTING OF SEWERS
21.4.1 General
21.4.2 Testing methods for sewer mains ≤DN 1500
21.4.2.1 Vacuum testing
21.4.2.2 Low pressure air testing
21.4.3 Testing of sewer mains >DN 1500
21.4.3.1 General
21.4.3.2 Not used
21.4.4 Not used
21.4.5 Not used
21.4.5.1 Not used
21.4.5.2 Not used
MRWA 21.4.6 Testing of MHs
MRWA 21.4.6.1 General
MRWA 21.4.6.2 MH testing frequency
MRWA 21.4.6.3 Test method
MRWA 21.4.7 Vacuum testing of complete sewer system
 MRWA 21.4.7.1 Applicability
 MRWA 21.4.7.2 Method of test

21.5 INFILTRATION CHECK

21.6 DEFLECTION (OVALITY) TESTING OF FLEXIBLE SEWERS
 21.6.1 General
 21.6.2 Ovality proving tools
 MRWA 21.6.2.1 Size and material
 MRWA 21.6.2.2 Ovality proving tool gauges
 21.6.3 Flexible sewers <DN 300
 21.6.4 Flexible sewers ≥DN 300
 21.6.4.1 Not used
 21.6.4.2 Not used
 21.6.4.3 Not used
 MRWA 21.6.4.4 Physical measurement in large diameter sewers

21.7 NOT USED
21.8 NOT USED

21.9 INSPECTION AND TESTING OF THERMOPLASTICS LINED CONCRETE SEWERS AND MHS
 21.9.1 Visual inspection
 21.9.2 Spark testing
 21.9.3 Locking key pull-out tests

21.10 PRESSURE TESTING OF INVERTED SYPHONS
 21.10.1 General
 21.10.2 Hydrostatic system test pressure
 21.10.3 Not used

MRWA 21.11 CCTV INSPECTION
 MRWA 21.11.1 General
 MRWA 21.11.2 Requirements for CCTV contractors
 MRWA 21.11.3 Reporting
 MRWA 21.11.4 Internal inspection
 MRWA 21.11.4.1 General
 MRWA 21.11.4.2 Acceptable results
 MRWA 21.11.4.3 Reporting of results
 MRWA 21.11.5 Electronic deflection testing
 MRWA 21.11.5.1 General
 MRWA 21.11.5.2 Acceptable results
 MRWA 21.11.5.3 Reporting of results
 MRWA 21.11.6 Measurement of sewer grade
 MRWA 21.11.6.1 General
 MRWA 21.11.6.2 Reporting of results

22 TOLERANCES ON AS-CONSTRUCTED WORK
 22.1 HORIZONTAL TOLERANCES
 22.1.1 Sewers and on-line structures
 22.1.2 Property connection sewers
 22.2 VERTICAL TOLERANCES
 22.2.1 Sewers and structures
 22.2.2 Property connection risers and inspection openings
 22.2.3 Grade
 22.2.4 Verticality (“plumb”)
 22.3 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
 22.4 TOLERANCES ON CAST IN-SITU CONCRETE STRUCTURES AND SLABS

23 CONNECTION TO EXISTING SEWERS

24 RESTORATION
 24.1 GENERAL
24.2 PAVEMENTS
24.3 LAWNS
24.4 GRASSED AREAS
24.5 BUSHLAND
24.6 PROVISION FOR AND RECTIFICATION OF SETTLEMENT
24.7 MAINTENANCE OF RESTORED SURFACES

25 WORK AS CONSTRUCTED DETAILS

TABLES
Table 21.1 Not used
Table MRWA 21.7 Sewer Testing Requirements
Table 21.2 Not used
Table MRWA 21.8 Flexible Pipes – Minimum Embedment Compaction
Table MRWA 21.9 Rigid Pipes – Minimum Embedment Compaction
Table MRWA 21.10 Pressure Testing – Summary of Test Pressures
Table 21.3 Vacuum Testing Acceptance Times
Table MRWA 21.11 Low Pressure Air Testing Acceptance Times
Table 21.4 Not used
Table 21.5 Not used
Table MRWA 21.12 Deflection Testing Limitations and Alternative Methods
Table MRWA 21.13 Prover Outside Diameter for PVC and PP Pipes
Table 21.6 Maximum Allowable Short-Term Pipe Deflections
Table MRWA 21.14 Summary of Results and Reports to be Submitted
Table 22.1 Sewer Grade Tolerances
Table 22.2 Property Connection Sewer Grade Tolerances

FIGURES
Figure 16.1 Not used
Figure 16.2 Not used
Figure 16.3 Not used
Figure 16.4 Not used
Figure MRWA 21.1 Summary Report Template
Figure MRWA 21.2 Electronic Deflection Testing Report Template