CONTENTS

PREFACE 6
INTRODUCTION 9
PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS
I Glossary of Terms 14
II Abbreviations 27
III Referenced Documents 31
PART 1: PLANNING AND DESIGN 36
Contents 36
1 General 46
2 System Planning 57
3 Flow Estimation 66
4 Products and Materials 68
5 Detail Design 80
6 Property Connection 114
7 Maintenance Structures 122
8 Ancillary Structures 158
9 Structural Design 178
10 Design Review and Drawings 203
PART 2: CONSTRUCTION 210
Contents 210
11 General 216
12 General Construction 218
13 Products and Materials 226
14 Excavation 230
15 Bedding for Pipes and Maintenance Structures 235
16 Pipe Laying and Jointing 237
17 Maintenance Holes (MHs) 247
18 Maintenance Shafts (MS and TMS), Maintenance Chambers (MC and Inspection Openings (IO) or Inspection Shafts (IS) 250
19 Pipe Embedment and Support 251
20 Fill 254
21 Acceptance Testing 257
22 Tolerances on As-Constructed Work 271
23 Connections to Existing Sewers 273
24 Restoration 274
25 Work As Constructed Details 276
APPENDICES

Appendix A Generic Infrastructure Protection Guidance
Appendix B Estimation of Equivalent Population
Appendix C Flow Estimation for Undeveloped Population
Appendix D Protection Against Degradation
Appendix E Ventilation of Reticulation Sewers Guidelines
Appendix F Trenchless Technologies
Appendix G Use of Bends, Fittings and Maintenance Shafts/Chambers
Appendix H Property Connection Types
Appendix I Maximum Depth to Invert for Standard Support Types
Appendix J Pipelines in Slip and Potentially Unstable Areas
Appendix K Ovality Testing of Gravity Sewers
Appendix L Specification for Internal Inspection
Gravity Sewerage Code of Australia

Part 1: Planning and Design

Third Edition
Version 3.1
3.3.2 Traditional design flow estimation method
3.3.3 Design flow estimation incorporating existing systems
3.3.4 Design flow estimation—Partially pumped systems
3.3.5 Flow schedule

4 PRODUCTS AND MATERIALS

4.1 GENERAL
4.2 IDENTIFICATION OF SEWER SYSTEMS
4.3 SERVICABILITY OF SEWER SYSTEMS
4.4 PROTECTION AGAINST DEGRADATION
4.5 DUCTILE IRON GRAVITY SEWERS
 4.5.1 Product Specifications
 4.5.2 Sizes and configurations
 4.5.3 Cement mortar lining
 4.5.4 Sleeveing
4.6 PVC GRAVITY SEWERS
 4.6.1 Product Specifications
 4.6.2 Sizes and configurations
4.7 POLYETHYLENE GRAVITY SEWERS
 4.7.1 Product Specifications
 4.7.2 Sizes and configurations
4.8 POLYPROPYLENE GRAVITY SEWERS
 4.8.1 Product Specifications
 4.8.2 Sizes and configurations
4.9 GRP GRAVITY SEWERS
 4.9.1 Product Specifications
 4.9.2 Sizes and configurations
4.10 PLASTICS-LINED CONCRETE GRAVITY SEWERS
 4.10.1 Product Specifications
 4.10.2 Sizes and configurations
4.11 VITRIFIED CLAY SEWERS
 4.11.1 Product Specifications
 4.11.2 Sizes and configurations
4.12 STEEL GRAVITY SEWERS
 4.12.1 Product Specifications
 4.12.2 Sizes and configurations
 4.12.3 Joints
 4.12.4 Field welding
 4.12.5 Flanged joints
4.13 MAINTENANCE STRUCTURES
 4.13.1 Product Specifications
 4.13.2 Classification and application
 4.13.3 Sizes and configurations
4.14 MARKING TAPES
 4.14.1 Product Specifications
 4.14.2 Application
4.15 ACCESS COVERS AND FRAMES
 4.15.1 Product Specifications
 4.15.2 Application
 4.15.3 Cast iron access covers and frames
 4.15.4 Macro-composite access covers and frames
 4.15.5 Thermoplastic access covers and frames
 4.15.6 Size and configuration
 4.15.7 Marking of access covers and frames
4.16 VENT SHAFTS
 4.16.1 Product Specifications
 4.16.2 Application
5 DETAIL DESIGN

5.1 DETAIL DESIGN PROCESS

5.2 DETAIL DESIGN CONSIDERATIONS

5.2.1 Catchment design
5.2.2 Design accuracy
5.2.3 Sewer layout
5.2.4 Location of sewers
 5.2.4.1 General
 5.2.4.2 Sewers located along side boundaries
 5.2.4.3 Sewers located along rear boundaries
 5.2.4.4 Sewers located in small lots (lot area ≤450 m²)
 5.2.4.5 Sewers servicing industrial/commercial lots
 5.2.4.6 Branch and trunk sewers
5.2.5 Trenchless techniques for pipe installation
5.2.6 Near-horizontal boreholes and tunnels
 5.2.6.1 General
 5.2.6.2 Design requirements
 5.2.6.3 Silt traps
5.2.7 Environmental, cultural and heritage considerations
 5.2.7.1 General
 5.2.7.2 Urban salinity
 5.2.7.3 Acid sulphate soils
 5.2.7.4 Vegetation
 5.2.7.5 Coastal zones
 5.2.8 Easements
 5.2.9 Disused sewers
 5.2.10 Special design considerations

5.3 HORIZONTAL ALIGNMENT OF SEWERS

5.3.1 General
5.3.2 Roads, reserves and open space
5.3.3 Railway reserves
5.3.4 Waterways
5.3.5 Maintenance structures and vent shafts
5.3.6 Changes in direction using an MH
5.3.7 Changes in direction using an MS or MC
5.3.8 Horizontal curves in sewers
 5.3.8.1 General
 5.3.8.2 Use of manufactured and variable bends in reticulation sewers
 5.3.8.3 Cumulative deflection using pipe joints

5.4 OBSTRUCTIONS AND CLEARANCES

5.4.1 General
5.4.2 Surface obstructions
5.4.3 Clearance from transmission towers and power lines
5.4.4 Clearance from structures
5.4.5 Underground obstructions and services
 5.4.5.1 General
 5.4.5.2 Clearance requirements
5.4.6 Marker posts

5.5 PIPE SIZING AND GRADING

5.5.1 General
5.5.2 Environmental protection requirements
5.5.3 Minimum air space
5.5.4 Minimum pipe sizes for maintenance purposes
5.5.5 Maximum ET for reticulation sewers
 5.5.5.1 General
 5.5.5.2 Design assumptions
5.5.6 Limitation on sewer size reduction
5.5.7 Minimum grades for self-cleansing
 5.5.7.1 General
 5.5.7.2 Reticulation sewers
 5.5.7.3 Property connection sewers and end-of-line sewers
5.5.8 Minimum grades for slime control
5.5.9 Maximum grades
 5.5.9.1 Branch and trunk sewers
 5.5.9.2 Reticulation sewers

5.6 VERTICAL ALIGNMENT OF SEWERS
 5.6.1 General
 5.6.2 Long section design plan
 5.6.3 Minimum cover over sewers
 5.6.4 Lot servicing requirements
 5.6.4.1 General
 5.6.4.2 Serviced area requirements for residential lots
 5.6.4.3 Serviced area requirements for industrial and commercial lots
 5.6.4.4 Partial lot service
 5.6.4.5 Servicing of basements
 5.6.4.6 Servicing of developed lots
 5.6.5 Minimum depth of sewer connection point
 5.6.5.1 General
 5.6.5.2 Soffit requirement
 5.6.5.3 Physical losses in customer sanitary drains
 5.6.5.4 Depth of connection point
 5.6.6 Grading through MHs
 5.6.6.1 General
 5.6.6.2 Internal fall through MHs joining sewers of same diameter
 5.6.6.3 Internal falls through MHs joining sewers of different diameters
 5.6.6.4 Major sewer junctions
 5.6.6.5 Large falls at MHs
 5.6.6.6 Avoiding hydraulic jumps due to steep grades
 5.6.6.7 Avoiding deep channels in MHs due to steep grades
 5.6.7 Vertical curves in sewers
 5.6.8 Compound curves

6 PROPERTY CONNECTION
 6.1 GENERAL
 6.2 LIMITATIONS OF CONNECTION TO SEWERS
 6.3 METHODS OF THE PROPERTY CONNECTION
 6.3.1 General
 6.3.2 IO interface method
 6.3.3 Buried interface method
 6.3.4 Typical layouts of sewers and general arrangements for property connection sewers
 6.3.5 Maximum depth of property connection point
 6.4 NUMBER OF PROPERTY CONNECTION POINTS
 6.4.1 Single occupancy lots
 6.4.2 Multiple occupancy lots
 6.5 LOCATION OF PROPERTY CONNECTION POINTS
 6.5.1 General
 6.5.2 Vacant lots
 6.5.3 Lots with existing buildings
 6.6 PROPERTY CONNECTION SEWERS
 6.6.1 General
 6.6.2 ‘Type 7 spur’ or ‘Y’ property sewer connections
 6.7 LENGTH OF PROPERTY CONNECTION SEWERS

7 MAINTENANCE STRUCTURES
 7.1 TYPES OF MAINTENANCE STRUCTURES
7.2 LOCATIONS OF MAINTENANCE STRUCTURES
7.3 SPACING OF MAINTENANCE STRUCTURES
 7.3.1 General
 7.3.2 Maintenance structure spacing—Reticulation sewers
 7.3.3 Maintenance structure spacing—Branch and trunk sewers
7.4 SPECIAL CONSIDERATIONS FOR LOCATION OF MAINTENANCE STRUCTURES
7.5 SPECIAL CONSIDERATIONS FOR CONNECTION OF NEW SEWERS TO EXISTING SEWERS

7.6 MAINTENANCE HOLES (MHS)
 7.6.1 General
 7.6.2 Types of MH construction
 7.6.3 Design parameters for MHs
 7.6.4 Design requirements for connection of sewers to MHs
 7.6.4.1 Pre-cast concrete MH base units
 7.6.4.2 Cast in-situ concrete MH base units
 7.6.4.3 Rocker pipes
 7.6.5 Connection of property connection sewers into MHs
 7.6.6 MH drops
 7.6.7 Diameters of MHs
 7.6.8 MH base layout
 7.6.9 Ladders, step irons and landings

7.7 MAINTENANCE SHAFTS (MSS) / MAINTENANCE CHAMBERS (MCS)
 7.7.1 General
 7.7.2 Design parameters for MCs, MSs and TMSs
 7.7.3 Connections to MCs, MSs and TMSs
 7.7.3.1 Connections to PE MSs and TMSs
 7.7.3.2 Connections to pre-cast concrete MC base units
 7.7.3.3 Connections to PP MCs and MSs
 7.7.4 High-level connections to MCs, MSs and TMSs
 7.7.4.1 High-level connections into a pre-cast concrete MC
 7.7.4.2 High-level connections into a PE MC and MS
 7.7.4.3 High-level connections into a PVC-U MS
 7.7.4.4 High-level connections into a PP MC and MS

7.8 INSPECTION SHAFTS (ISS)
 7.8.1 General
 7.8.2 Terminal inspection shaft (Type A)
 7.8.3 Vertical drop inspection shaft (Type B)
 7.8.4 Intermediate inspection shaft (Type C)
 7.8.5 Ends of pipe
 7.8.5.1 Temporary ends of pipe
 7.8.5.2 Permanent ends of pipe

7.9 MAINTENANCE STRUCTURE COVERS
 7.9.1 General
 7.9.2 Cross-fall on MH covers
 7.9.3 Modifications to existing maintenance holes

7.10 SEWERS FROM JUNCTIONS
7.11 OTHER MAINTENANCE STRUCTURES AT INTERFACE OF PROPERTY CONNECTION SEWERS AND SANITARY DRAINS

8 ANCILLIARY STRUCTURES
8.1 GENERAL
8.2 WATER SEALS, BOUNDARY TRAPS, WATER-SEALED MHS AND GAS CHECK MHS
 8.2.1 Boundary traps on sanitary drains
 8.2.1.1 General
 8.2.1.2 Responsibility for installation of boundary traps
 8.2.2 Water seals, water-sealed MHs and gas check MHs
 8.2.2.1 General
8.2.2.2 Water seals on reticulation sewers entering branch or trunk sewers
8.2.2.3 Water seals on branch sewers entering trunk sewers
8.2.3 Water-sealed MHs and gas check MHs
 8.2.3.1 General
 8.2.3.2 Water-sealed MHs
 8.2.3.3 Gas check MHs
8.3 VERTICAL AND NEAR VERTICAL SEWERS
 8.3.1 General
 8.3.2 Design parameters for bored, exposed and encased vertical and near vertical sewers
8.4 VENTILATION
 8.4.1 General
 8.4.2 Design parameters for ventilation and location of vent shafts
 8.4.3 Design details for ventilation lines, vent shafts and cowls
8.5 VORTEX INLETS AND WATER CUSHIONS
8.6 INVERTED SYPHONS
 8.6.1 General
 8.6.2 Design parameters for inverted syphons
8.7 EMERGENCY RELIEF STRUCTURES
 8.7.1 General
 8.7.2 Design parameters for ERSs
 8.7.2.1 General
 8.7.2.2 Configuration
 8.7.2.3 Overflow pipe
 8.7.2.4 Overflow level
8.8 FLOW MEASURING DEVICES
 8.8.1 General
 8.8.2 Within the sewer system
 8.8.3 At a sewage pumping station
8.9 WET WEATHER STORAGE
 8.9.1 General
 8.9.2 Design considerations
9 STRUCTURAL DESIGN
 9.1 GENERAL
 9.2 PRODUCTS AND MATERIALS
 9.3 STRUCTURAL CONSIDERATIONS
 9.3.1 Pipes
 9.3.2 Design factors affecting buried flexible and rigid pipes
 9.3.3 Maintenance structures
 9.4 LOADINGS
 9.4.1 External forces
 9.4.2 Native soil strength
 9.4.3 Embedment zone dimensions
 9.4.4 Pipe embedment
 9.4.5 Buoyancy
 9.4.6 Flotation
 9.5 FOUNDATION DESIGN AND GROUNDWATER CONTROL
 9.5.1 Migration of fines
 9.6 GEOTECHNICAL CONSIDERATIONS
 9.6.1 General
 9.6.2 Pipelines in engineered or controlled fill
 9.6.3 Pipelines in non-engineered fill
 9.6.4 Filling along route of pipeline
 9.6.5 Mine subsidence
 9.6.6 Slip areas
 9.6.7 Water-charged ground
 9.7 SPECIAL EMBEDMENT CONCRETE AND STABILISED SUPPORTS
9.7.1 General
9.7.2 Requirements
9.8 ABOVE GROUND CROSSINGS
9.9 PIPE COVER
9.10 BULKHEADS AND TRENCHSTOPS
9.11 TRENCH DRAINAGE

10 DESIGN REVIEW AND DRAWINGS
10.1 DESIGN REVIEW
10.2 DESIGN DRAWINGS
 10.2.1 General
 10.2.2 Composition of Design Drawings
 10.2.3 Scale
 10.2.4 Real property information
 10.2.5 Sewers
 10.2.6 Structures
 10.2.7 Longitudinal sections (profiles)
 10.2.8 Title block notation and standard notes
 10.2.9 Other
10.3 SEWER SYSTEM ACRONYMS
10.4 SPECIFICATIONS
10.5 RECORDING OF WORK AS CONSTRUCTED INFORMATION

TABLES
Table 1.1 Asset Categories
Table 1.2 Typical Asset Design Life
Table 1.3 Planning and Design Approach
Table 4.1 Colour Identification of Components in Reticulation Sewer Systems
Table 4.2 Limitations of Sewage Chemistry Constituents for Use of Different Types of Cement
Table 5.1 Maximum Limit of Deviation in Level and Line of Boreholes and Tunnels
Table 5.2 Maximum Allowable Deflections Through an MH
Table 5.3 Methods of Achieving Curved Sewers
Table 5.4 Clearances Between Sewers and Other Underground Services
Table 5.5 Minimum Pipe Sizes for Reticulation and Property Connection Sewers
Table 5.6 Maximum Capacities for Gravity Sewers for Various Locations
Table 5.7 Manning Coefficient
Table 5.8 Design Minimum Grades
Table 5.9 Minimum Grades for Property Connection Sewers
Table 5.10 Minimum Grades for End-of-line Sewers
Table 5.11 Minimum Cover over Sewers
Table 5.12 Minimum Internal Fall Through an MH Joining Reticulation Sewers of Same Diameter
Table 5.13 Limitations on Large Falls at MHs Using Internal and External Drops
Table 5.14 Steep Sewers Requiring Special Treatment
Table 7.1 Acceptable Maintenance Structure Options for Reticulation and Property Connection Sewers
Table 7.2 External MH Drop Pipe Structure
Table 7.3 Rocker Pipe Dimensions
Table 7.4 Minimum Drop Height Details for PP
Table 7.5 Guide to Selection of Maintenance Structure Access Covers, Class and Finished Surface Levels
Table 8.1 Requirements for Vortex Inlets and Water Cushions
Table 8.2 ERS Structure Components
Table 9.1 Requirements for Bulkheads and Trenchstops

FIGURES
Figure 2.1 Disaggregation Model for Transportation Subsystems
Figure 3.1 Flow Components in a Gravity System
Figure 5.1 Physical Losses in Customer Sanitary Drains
Figure 5.2 Depth of Point of Connection and Use of Risers
Figure 5.3 Excessively Deep Channels Caused By Steep Grades
Figure 5.4 Incoming Level Adjusted to Prevent Deep Channel
Figure 6.1 Typical Raised Inspection Opening Interface Method
Figure 6.2 Typical Buried Interface Method – Variation (A)
Figure 6.3 Typical Buried Interface Method – Variation (B)
Figure 6.4 Property Connection Points for Sewers in Road Reserves – IO Interface Method
Figure 6.5 Property Connection Points for Sewers in Easements and Private Lots – Buried Interface Method
Figure 6.6 Typical Connection to Deep Sewers in Private Property
Figure 6.7 ‘Type 7 ‘Spur’ or ‘Y’ Property Sewer Connections – Buried Interface Method
Figure 7.1 Single MS or MC Between Consecutive MHs
Figure 7.2 Multiple MS or MC Between Consecutive MHs
Figure 7.3 No MS or MC Between Last MH and IS, TMS or MC
Figure 7.4 Single MS/MC Between Last MH and IS, TMS or MC
Figure 7.5 Typical Pre-Cast MH Base with Pre-Formed Benching
Figure 7.6 Typical Pre-Cast Concrete MH Base with Conical Benching
Figure 7.7 Typical Cast In-Situ Concrete MH Base for VC, RC and DI RRJ Sewers
Figure 7.8 Typical Cast In-Situ Concrete MH Base for PVC RRJ Sewers
Figure 7.9 Typical Cast In-Situ Concrete MH Base for PVC-U SCJ
Figure 7.10 Typical Cast In-Situ Concrete MH Base for VC and GRP Sleeved Coupled Sewers
Figure 7.11 Typical Cast In-Situ Concrete MH Base for Profile Wall PP Sewers
Figure 7.12 Typical Cast In-Situ Concrete MH Base for Solid Wall PE Sewers
Figure 7.13 Typical Cast In-Situ Concrete MH with External Drop Pipe (PVC-U DWV RRJ Sewer Pipe Shown)
Figure 7.14 Typical Pre-Cast Concrete MH with External Drop Pipe (PVC-U DWV RRJ Sewer Pipe Shown)
Figure 7.15 Typical Cast In-Situ Concrete MH with Internal Drop Pipe (PVC-U
Figure 7.16 Typical MH Base Design
Figure 7.17 Typical Arrangements for the Connection of PE Sewers
Figure 7.18 Typical Arrangements for the Connection of a PE MS to PE Sewers
Figure 7.19 Typical PVC-U Cap Assembly and Fittings
Figure 7.20 Typical Arrangement for the Connection to a Pre-Cast Concrete MC
Figure 7.21 Typical PP MC and MS Connection Details
Figure 7.22 Typical TMS with Property Connection Ahead
Figure 7.23 Typical Pre-Cast MC with High-Level Connection
Figure 7.24 Typical PE MC or MS Drop Detail Dimensions
Figure 7.25 Typical PVC-U MS Drop Detail Dimensions
Figure 7.26 Typical PP MC/MS With High-Level Connection
Figure 7.27 Typical External Sewer Drop Structure Type A - 45° Slope Junction
Figure 7.28 Typical External Sewer Drop Structure Type B – 90° Slope Junction
Figure 7.29 Terminal Inspection Shaft – Type A
Figure 7.30 Vertical Drop Inspection Shaft – Type B
Figure 7.31 Intermediate Inspection Shaft – Type C
Figure 7.32 Access Requirements for Sewers from Junctions
Figure 8.1 Application of Water Seal Arrangements
Figure 8.2 Typical Boundary Trap and Shaft
Figure 8.3 Typical Water Seal on Inlet Sewer
Figure 8.4 Typical Water-Sealed MH with External Drop – Plan View
Figure 8.5 Typical Water-Sealed MH with External Drop – Elevation
Figure 8.6 Typical Water-Sealed MH with Minimum Drop – Plan View
Figure 8.7 Typical Water-Sealed MH with Minimum Drop – Elevation
Figure 8.8 Typical Gas Check MH – Sectional Plan
Figure 8.9 Typical Gas Check MH – Section Elevation
Figure 8.10 Typical Gas Check MH – Internal Drop Arrangement Section Elevation
Figure 8.11 Typical Syphon Creek Crossing
Figure 8.12 Typical PE Pipe Section
Figure 8.13 Typical ERS Arrangement – Plan
Figure 8.14 Typical ERS Arrangement – Elevation
Figure 8.15 Typical Headwall Arrangement - Elevation
Figure 9.1 Typical Arrangement for Buried Flexible Pipelines
Figure 9.2 Type 1 Support for Rigid Pipes Only
Figure 9.3 Type 2 Support for Rigid Pipes Only
Figure 9.4 Type 3 Support for Flexible And Rigid Pipes
Figure 9.5 Type 4 Embedment Support with Geotextile Filter Fabric for Flexible and Rigid Pipes
Figure 9.6 Type 5 and 6 Support Utilising Concrete Foundation
Figure 9.7 Type 7 Support Utilising Geotextile Pillow Foundation for Rigid and Flexible Pipes
Figure 9.8 Type 8 Support Utilising Cement Stabilised Foundation for Rigid and Flexible Pipes
Figure 9.9 Type 9 Embedment Support
Figure 9.10 Type 10 Embedment Support
Figure 9.11 Type 11 Embedment Support
Figure 9.12 Type 12R Support Concrete Encasement
Figure 9.13 Type 12U Support Concrete Embedment
Figure 9.14 Type 13 Support Utilising Cement Stabilised Embedment
Figure 9.15 Typical Concrete Bulkhead Detail
Figure 9.16 Typical Road Crossing Bulkhead
Figure 9.17 Typical Trenchstop Detail
Figure 9.18 Typical Trench Drainage Detail at Bulkhead
Figure 9.19 Typical Trench Drainage Discharge
Figure 9.20 Typical Trench Drainage Detail at Low Point in Trench
Figure 9.21 Typical Trench Drainage Detail at Concrete Encased Sections
Figure 9.22 Typical Trench Drainage Around MHs
CONTENTS

11 GENERAL
 11.1 SCOPE
 11.1.1 Resolution of complaints
 11.2 INTERPRETATION

12 GENERAL CONSTRUCTION
 12.1 GENERAL
 12.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 12.3 CONTRACT INTERFACES
 12.4 CUSTOMER FOCUS
 12.4.1 General
 12.4.2 Resolution of complaints
 12.5 PROTECTION OF PROPERTY AND ENVIRONMENT
 12.5.1 Protection of other services
 12.5.2 Road reserves or other thoroughfares
 12.5.2.1 Road opening permits
 12.5.2.2 Treatment of pavements and other surfaces
 12.5.2.3 Cleanliness of roads, paths, accesses and drainage paths
 12.5.2.4 Storage of products, materials, equipment and excavated material
 12.5.2.5 Obstruction of street drainage
 12.5.3 Private and public lands
 12.5.4 Protection of the environment and heritage areas
 12.5.4.1 General
 12.5.4.2 Collection and disposal of wastes
 12.5.4.3 Protection of adjacent lands and vegetation
 12.5.4.4 Control of water pollution
 12.5.4.5 Contaminated soils
 12.5.4.6 Control of noise and atmospheric pollution
 12.5.4.7 Equipment and machinery use in bush fire prone areas
 12.6 DISUSED SEWERS
 12.7 OPERATION OF WATER SUPPLY NETWORK
 12.8 ALTERATION OF EXISTING SERVICES
 12.9 SURVEY MARKS
 12.10 CONSTRUCTION TOLERANCES
 12.11 LATENT CONDITIONS

13 PRODUCTS AND MATERIALS
 13.1 APPROVED PRODUCTS AND MATERIALS
 13.2 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
 13.3 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
 13.3.1 General
 13.3.2 Transportation
 13.3.3 Unloading and handling
 13.3.4 On-site storage
 13.3.5 Plastics-lined concrete products
 13.3.6 Coiled plastics pipe
 13.4 CONCRETE WORKS
 13.5 SUPPLY OF WATER TO THE WORKS

14 EXCAVATION
 14.1 PRECAUTIONS
 14.2 LIMITS OF CLEARING AND EXCAVATION
 14.3 PROTECTION OF TREES
 14.3.1 General precautions
 14.3.2 Protection of roots
 14.4 BLASTING
14.5 SUPPORT OF EXCAVATIONS
14.6 DRAINAGE AND DEWATERING
14.7 EXCAVATION ACROSS IMPROVED SURFACES
14.8 TRENCH EXCAVATION
 14.8.1 General
 14.8.2 Construction of embankment
 14.8.3 Clearances for on-site works
14.9 REFILL OF EXCESSIVE EXCAVATION
14.10 FOUNDATIONS AND FOUNDATION STABILISATION
14.11 SURPLUS EXCAVATED MATERIAL
14.12 EXCAVATION AND PIPELAYING USING TRENCHLESS TECHNIQUES

15 BEDDING FOR PIPES AND MAINTENANCE STRUCTURES
15.1 TRENCH FLOOR PREPARATION
15.2 BEDDING MATERIALS
 15.2.1 Placement of bedding
15.3 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS
15.4 BEDDING FOR MAINTENANCE CHAMBERS, MAINTENANCE SHAFTS, INSPECTION SHAFTS AND BENDS
15.5 BEDDING FOR MAINTENANCE HOLES

16 PIPE LAYING AND JOINTING
16.1 INSTALLATION OF PIPES
 16.1.1 General
 16.1.2 Cleaning, inspection and joint preparation
 16.1.3 Coiled plastics pipes
 16.1.4 Laying
16.2 HORIZONTAL AND VERTICAL DEFLECTION OF SEWERS
 16.2.1 General
 16.2.2 Methods of deflection
 16.2.3 Horizontal curves
 16.2.4 Vertical curves
 16.2.5 Compound curves
16.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
16.4 FLOTATION CONTROL
16.5 TRENCH STOPS
16.6 BULKHEADS
16.7 PROPERTY CONNECTION SEWERS
16.8 DEAD ENDS
16.9 MARKING OF PROPERTY CONNECTION SEWERS AND DEAD ENDS
16.10 CORROSION PROTECTION OF CAST IRON
16.11 MARKERS
 16.11.1 Non-detectable marking tape
 16.11.2 Detectable marking tape
16.12 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
16.13 AQUEDUCTS
16.14 BRIDGE CROSSINGS
16.15 PLASTICS-LINED RC PIPE JOINTING
 16.15.1 General
 16.15.2 Plastics lining work protection
 16.15.3 Field jointing
 16.15.4 Plastics lining ancillary work
 16.15.4.1 Alignment of lining keys
 16.15.4.2 Provision of seepage channels
 16.15.4.3 Use of jointing accessories and adhesives
16.16 WELDING OF STEEL PIPELINES
 16.16.1 General
 16.16.2 Field welding of flanges
 16.16.3 Reinstatement of cement mortar lining
16.16.4 Reinstatement of external corrosion protection at joints using a tape system
 16.16.4.1 Surface preparation
 16.16.4.2 Priming surfaces
 16.16.4.3 Mastic filler
 16.16.4.4 Tape application
16.16.5 Reinstatement of external corrosion protection at joints using a heat-shrinkable sleeve system
 16.16.5.1 Surface preparation
 16.16.5.2 Preheat pipe
 16.16.5.3 Priming surfaces
 16.16.5.4 Mastic filler
 16.16.5.5 Heat-shrinkable sleeve preparation
 16.16.5.6 Heat-shrinkable sleeve application
16.17 WELDING OF PE PIPELINES
 16.17.1 General
 16.17.2 Welder qualifications
 16.17.3 Connections to pipes of other materials

17 MAINTENANCE HOLES (MHS)
 17.1 GENERAL
 17.2 CONCRETE MHS
 17.2.1 Concrete MH base
 17.2.2 Pre-cast concrete MH systems
 17.2.3 Cast in-situ concrete MH
 17.2.4 Benching and channels
 17.2.5 Concreting for thermoplastics-lined works
 17.2.5.1 Concrete work planning
 17.2.5.2 Fixing of thermoplastics lining for concrete work
 17.2.5.3 Concrete placement and formwork removal
 17.2.6 Internal coating of concrete MHs
 17.3 GLASS REINFORCED PLASTICS (GRP) MHS
 17.4 POLYETHYLENE (PE) MHS
 17.5 POLYPROPYLENE (PP) MHS
 17.6 TRENCH DRAINAGE AROUND MHS
 17.7 COVERS
 17.8 CONNECTIONS TO MHS
 17.9 MH DROPS
 17.10 LADDERS, STEP IRONS AND LANDINGS

18 MAINTENANCE CHAMBERS (MC), MAINTENANCE SHAFTS (MS AND TMS) AND INSPECTION OPENINGS (IO) OR INSPECTION SHAFTS (IS)
 18.1 GENERAL
 18.2 SEALING CAPS
 18.3 COVERS
 18.4 CONNECTIONS TO MCS, MSS AND TMSS

19 PIPE EMBEDMENT AND SUPPORT
 19.1 GENERAL
 19.2 EMBEDMENT MATERIALS
 19.3 COMPACTION OF EMBEDMENT
 19.3.1 Methods
 19.3.2 Compaction trials / Pre-qualification of embedment compaction method
 19.3.2.1 General
 19.3.2.2 Test method
 19.3.2.3 Interpretation and applicability
 19.3.3 Compaction control
 19.4 SPECIAL BEDDING AND EMBEDMENTS / GEOTEXTILE SURROUND AND PILLOW
 19.5 REMOVAL OF TRENCH SUPPORTS
 19.6 CONCRETE EMBEDMENT AND ENCASEMENT
20 FILL
20.1 TRENCH FILL
 20.1.1 General
 20.1.2 Material requirements
 20.1.2.1 Trafficable areas
 20.1.2.2 Non-trafficable areas
 20.1.3 Placement
 20.1.4 Compaction of trench fill
20.2 EMBANKMENT FILL
20.3 DRIVES AND TUNNEL FILL

21 ACCEPTANCE TESTING
21.1 GENERAL
21.2 VISUAL INSPECTION—ABOVE-GROUND
21.3 COMPACTION TESTING
 21.3.1 General
 21.3.2 Compaction testing requirements
 21.3.2.1 General
 21.3.3 Embedment compaction testing
 21.3.3.1 Applicable pipe sizes
 21.3.3.2 Frequency and location of embedment tests
 21.3.3.3 Retesting
 21.3.4 Trench fill compaction testing
 21.3.4.1 Trafficable test zone
 21.3.4.2 Non-trafficable test zone
 21.3.4.3 Test method
 21.3.4.4 Frequency and location of tests
 21.3.4.5 Retesting
 21.3.5 Other fill compaction testing
 21.3.5.1 General
 21.3.5.2 Trafficable test zone
 21.3.5.3 Non-trafficable test zone
 21.3.5.4 Frequency and location of tests
 21.3.5.5 Retesting
21.4 AIR PRESSURE AND VACUUM TESTING OF SEWERS
 21.4.1 General
 21.4.2 Air testing methods for sewers
 21.4.2.1 Vacuum testing
 21.4.2.2 Low pressure air testing
 21.4.3 Testing of sewers >DN 1500
 21.4.3.1 General
 21.4.3.2 Method of test
 21.4.4 Testing of non-pressure PE sewers
 21.4.5 Testing of concrete MHs
 21.4.5.1 General
 21.4.5.2 Test method
21.5 INFILTRATION TESTING
21.6 DEFLECTION (OVALLITY) TESTING OF FLEXIBLE SEWERS
 21.6.1 General
 21.6.2 Ovality proving tools
 21.6.3 Flexible sewers ≤DN 300
 21.6.4 Flexible sewers >DN 300
 21.6.4.1 General
 21.6.4.2 Flexible sewers >DN 300 and <DN 750
 21.6.4.3 Flexible sewers ≥DN 750
21.7 MEASUREMENT OF SEWER GRADE
21.8 INTERNAL INSPECTION
21.9 INSPECTION AND TESTING OF THERMOPLASTICS LINED CONCRETE SEWERS AND MHS
 21.9.1 Visual inspection
 21.9.2 Spark testing
 21.9.3 Locking key pull-out tests
21.10 PRESSURE TESTING OF INVERTED SYPHONS
 21.10.1 General
 21.10.2 Hydrostatic system test pressure
 21.10.3 Satisfactory pressure test

22 TOLERANCES ON AS-CONSTRUCTED WORK
22.1 HORIZONTAL TOLERANCES
 22.1.1 Sewers and on-line structures
 22.1.2 Property connection sewers
22.2 VERTICAL TOLERANCES
 22.2.1 Sewers and structures
 22.2.2 Property connection risers and inspection openings
 22.2.3 Grade
 22.2.4 Verticality ("plumb")
22.3 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
22.4 TOLERANCES ON CAST IN-SITU CONCRETE STRUCTURES AND SLABS

23 CONNECTION TO EXISTING SEWERS

24 RESTORATION
24.1 GENERAL
24.2 PAVEMENTS
24.3 LAWNS
24.4 GRASSED AREAS
24.5 BUSHLAND
24.6 PROVISION FOR AND RECTIFICATION OF SETTLEMENT
24.7 MAINTENANCE OF RESTORED SURFACES

25 WORK AS CONSTRUCTED DETAILS

TABLES
Table 21.1 Flexible Pipes – Minimum Compaction Embedment, Trench Fill And Embankment Of Flexible Pipes
Table 21.2 Rigid Pipes – Minimum Compaction Embedment, Trench Fill And Embankment
Table 21.3 Pressure And Vacuum Air Testing Acceptance Times For 7 kPa Pressure Change
Table 21.4 Concrete MH Testing Frequency
Table 21.5 Minimum Test Times For Concrete MHs
Table 21.6 Maximum Allowable Short-Term Pipe Deflections
Table 22.1 Sewer Grade Tolerances
Table 22.2 Property Connection Sewer Grade Tolerances

FIGURES
Figure 16.1 Ball and Socket Joint
Figure 16.2 Slip-In Welded Joint
Figure 16.3 Plain End Welded Collar Joint
Figure 16.4 Plain End Butt Welded Joint