SEWAGE PUMPING STATION CODE
of Australia

WSA 04-2005
Version 2.1
Sewage Pumping Station
Code of Australia

WSA 04—2005

Second Edition
Version 2.1

Previous edition WSA 04—2001
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>6</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>9</td>
</tr>
<tr>
<td>PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS</td>
<td></td>
</tr>
<tr>
<td>I Glossary of Terms</td>
<td>12</td>
</tr>
<tr>
<td>II Abbreviations</td>
<td>19</td>
</tr>
<tr>
<td>III Referenced Documents</td>
<td>23</td>
</tr>
<tr>
<td>IV Other References</td>
<td>30</td>
</tr>
<tr>
<td>PART 1: PLANNING AND DESIGN</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>36</td>
</tr>
<tr>
<td>1 General</td>
<td>45</td>
</tr>
<tr>
<td>2 Concept Design</td>
<td>53</td>
</tr>
<tr>
<td>3 General Design</td>
<td>62</td>
</tr>
<tr>
<td>4 Materials Design</td>
<td>70</td>
</tr>
<tr>
<td>5 Pumping Station Design</td>
<td>71</td>
</tr>
<tr>
<td>6 Pumping System</td>
<td>88</td>
</tr>
<tr>
<td>7 Power System</td>
<td>94</td>
</tr>
<tr>
<td>8 Control and Telemetry System</td>
<td>99</td>
</tr>
<tr>
<td>9 Wet-Well Pipework</td>
<td>115</td>
</tr>
<tr>
<td>10 Pressure Main</td>
<td>121</td>
</tr>
<tr>
<td>11 Structural Design</td>
<td>137</td>
</tr>
<tr>
<td>12 Supporting Systems</td>
<td>148</td>
</tr>
<tr>
<td>13 Health and Safety</td>
<td>150</td>
</tr>
<tr>
<td>14 Design Review</td>
<td>152</td>
</tr>
<tr>
<td>15 Design Documentation and Drawings</td>
<td>153</td>
</tr>
<tr>
<td>Appendix A Typical Precomissioning Checklist</td>
<td>157</td>
</tr>
<tr>
<td>Appendix B Commissioning Schedule</td>
<td>161</td>
</tr>
<tr>
<td>Appendix C AC Voltage Mitigation of Steel Pipelines</td>
<td>162</td>
</tr>
<tr>
<td>Appendix D Computer Program for Pressure Main Sizing</td>
<td>163</td>
</tr>
<tr>
<td>Appendix E Detailed Design Checklist</td>
<td>167</td>
</tr>
<tr>
<td>PART 2: PRODUCTS AND MATERIALS</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>174</td>
</tr>
<tr>
<td>16 Products and Materials Overview</td>
<td>176</td>
</tr>
<tr>
<td>Appendix F Quality Assurance of Products</td>
<td>187</td>
</tr>
<tr>
<td>PART 3: CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>194</td>
</tr>
</tbody>
</table>
17 General 202
18 Quality 205
19 General Construction 208
20 Products, Materials and Equipment 215
21 Electrical Works 222
22 Telemetry System 235
23 Odour Control System 237
24 Mechanical Installation of Pumps, Valves and Fittings 238
25 Metalwork 240
26 Access Road and Hardstand Areas 242
27 Retaining Walls 244
28 Excavation 247
29 Bedding for Pipes, Bends, Wet-Well and Maintenance Structures 249
30 Pipe Laying and Jointing 250
31 Wet-Well and Maintenance Holes (MHS) 256
32 Pipe Embedment and Support 258
33 Fill 261
34 Connection to Existing Gravity Sewers 263
35 Restoration 264
36 Acceptance Testing 266
37 Commissioning 277
38 Tolerances on As-Constructed Work 279
39 Work As-Constructed Details 281
Appendix G Ovality Testing of PVC and GRP Gravity Sewers Default Prover
 Diameters 282
PART 4: STANDARD DRAWINGS
Contents 284
40 Introduction 285
41 Listing of Standard Drawings 286
STANDARD DRAWINGS
CONTENTS

PREFACE

1 GENERAL
 1.1 SCOPE
 1.2 PLANNING
 1.2.1 General
 1.2.2 Pumping alternatives
 1.3 SEWAGE PUMPING STATIONS
 1.3.1 Pumping philosophy
 1.4 PURPOSE AND APPLICATION
 1.5 PLANNING AND DESIGN RESPONSIBILITIES AND INTERFACES
 1.5.1 General
 1.5.2 Planning responsibilities
 1.5.3 Design responsibilities
 1.5.4 Consultation with other parties
 1.6 SEWER SYSTEM DESIGN APPROACH
 1.6.1 Overall objective
 1.6.2 System design life
 1.6.3 Objectives of design
 1.6.4 Design output

2 CONCEPT DESIGN
 2.1 LIFE CYCLE CONSIDERATIONS
 2.2 FUNCTIONALITY
 2.3 MAINTAINABILITY
 2.4 RELIABILITY
 2.5 DUE DILIGENCE REQUIREMENTS
 2.6 MATERIALS DESIGN
 2.7 STAGING
 2.8 SEPTICITY CONTROL
 2.8.1 General
 2.8.2 Detention time
 2.9 ODOUR CONTROL
 2.10 NOISE CONTROL
 2.11 SERVICES
 2.12 ACCESS
 2.13 SECURITY
 2.14 SIGNAGE
 2.15 SUPPORTING SYSTEMS
 2.16 HEALTH AND SAFETY
 2.17 COMMISSIONING PLAN
 2.17.1 General
 2.17.2 Pre-commissioning
 2.17.3 Commissioning

3 GENERAL DESIGN
 3.1 GENERAL
 3.2 DESIGN TOLERANCES
 3.3 LEVELS
 3.4 UNFORESEEN GROUND CONDITIONS
 3.5 IMPACT OF CONSEQUENTIAL DAMAGE
 3.6 ENVIRONMENTAL CONSIDERATIONS
3.6.1 General
3.6.2 Urban salinity
3.6.3 Effect on vegetation
3.6.4 Contaminated sites
3.6.5 Tidal zones

3.7 EASEMENTS

3.8 CROSSINGS
3.8.1 General
3.8.2 Creeks and drainage reserves
3.8.3 Major roads

3.9 FUTURE MAINTENANCE

3.10 AC VOLTAGE MITIGATION OF METALLIC PIPELINES

3.11 OBSTRUCTIONS AND CLEARANCES
3.11.1 General
3.11.2 Surface obstructions
3.11.3 Clearance from structures
3.11.4 Underground obstructions and services
 3.11.4.1 General
 3.11.4.2 Clearance requirements
3.11.5 Crossing services
3.11.6 Deviation of pressure mains around structures

3.12 DISUSED OR REDUNDANT ITEMS

3.13 SEWAGE QUALITY
3.13.1 Septicity
3.13.2 Sewage quality/Trade waste management

4 MATERIALS DESIGN
4.1 GENERAL

4.2 CORROSION PROTECTION
4.2.1 Protective coatings
4.2.2 Concrete surfaces
4.2.3 Metallic materials
4.2.4 Miscellaneous items
4.2.5 Corrosion protection against aggressive environments
4.2.6 Cathodic protection
4.2.7 Stray current corrosion
4.2.8 Protection against contaminated ground

5 PUMPING STATION DESIGN
5.1 INTRODUCTION

5.2 SITE SELECTION, LOCATION AND LAYOUT
5.2.1 Site selection
5.2.2 Right of occupancy and access
5.2.3 Location and layout
5.2.4 Site area
5.2.5 Site layout and access
5.2.6 Landscaping

5.3 INLET MH
5.3.1 Location
5.3.2 Design
5.3.3 Pumping station wet-well isolating valve

5.4 WET-WELL DESIGN
5.4.1 General
5.4.2 Sizing
5.4.3 Pumping control volume and pump starts
5.4.4 Control levels
5.4.5 Detention time
5.4.6 Benching
5.4.7 Washers

5.5 WET-WELL VENTILATION
5.5.1 Natural ventilation
5.5.2 Forced ventilation
5.5.3 Educt vent shaft

5.6 OVERFLOW CONTAINMENT
5.6.1 General
5.6.2 Emergency storage
5.6.2.1 General
5.6.2.2 Configurations
5.6.2.3 Design
5.6.2.4 Access and cover arrangements
5.6.2.5 Type of construction
5.6.3 Future storage provisions
5.6.4 Emergency relief system

5.7 LADDERS AND PLATFORMS

5.8 WET-WELL ACCESS COVERS

5.9 SAFETY SYSTEMS

5.10 GRIT COLLECTION

5.11 SCREENS

5.12 MIXERS

6 PUMPING SYSTEM
6.1 STAGING
6.2 HYDRAULIC DESIGN
6.3 PUMP EQUIPMENT
6.4 PUMP SELECTION
6.5 TRIPLE-PUMP PUMPING STATIONS
6.6 SUBMERSIBLE PUMPS
6.6.1 General
6.6.2 Impeller selection
6.6.3 Motor selection
6.6.4 Standard discharge connection
6.6.5 Junction boxes
6.6.6 Pumpset lifting equipment

6.7 ANCILLARY EQUIPMENT
6.7.1 Flushing valves

6.8 PUMP STARTERS AND VARIABLE SPEED DRIVES
6.8.1 General
6.8.2 Single and double speed starters
6.8.3 Soft starters
6.8.4 Variable speed drives

6.9 HARMONICS AND RADIO FREQUENCY INTERFERENCE

6.10 EMERGENCY STOP

7 POWER SYSTEM
7.1 GENERAL
7.2 POWER SUPPLIES
7.2.1 General
7.2.2 Security of supply
7.2.3 Primary supply
7.2.4 Duplicate supply
7.2.5 Emergency power
7.2.6 On-site generator
7.2.7 Mobile generator
7.2.8 High voltage/Low voltage switching
7.2.9 Power factor correction

7.3 POWER AND CONTROL CUBICLE
7.3.1 Design
7.3.2 Low voltage switchboards
7.3.2.1 Standards
7.3.2.2 Construction
7.3.2.3 Rated diversity factor
7.3.2.4 Degree of protection
7.3.2.5 Rated insulation and operating voltages
7.3.2.6 Creepage distances
7.3.2.7 Rated impulse withstand voltage
7.3.2.8 Rated short-time current
7.3.2.9 Internal arcing fault protection
7.3.3 Meter requirements
7.3.4 Lighting

8 CONTROL AND TELEMETRY SYSTEM
8.1 GENERAL
8.2 OPERATING LEVELS AND SETTINGS
8.3 PUMPING CONTROL
8.3.1 Control design
8.3.2 Control switches
8.3.3 Control systems
8.3.4 Emergency back-up control
8.3.5 Pump starts and interlocks
8.4 ALARMS
8.4.1 General
8.4.2 Locally displayed alarms
8.4.3 Remote alarms
8.5 ALARM, STATUS MONITORING AND CONTROL TELEMETRY
8.5.1 General design principles
8.5.2 Reliability
8.5.3 Alarm creation function
8.5.4 Status monitoring function
8.5.5 Control function
8.6 TELEMETRY HARDWARE
8.6.1 General
8.6.2 Software
8.6.3 Inputs and outputs
8.6.4 Telemetry communications
8.6.5 Communication validation
8.7 OPERATING LEVELS AND DEFAULT SETTINGS
8.7.1 General
8.7.2 Cut-in and cut-out levels
8.7.3 Alarm levels
8.8 EQUIPMENT AND DEVICES
8.8.1 General
8.8.2 Flow measurement
8.8.3 Flowmeter cabling
8.8.4 Suction safety switch
8.8.5 Level sensors
8.8.6 Float-switch
8.8.7 Site access monitoring
8.8.8 Protection devices
 8.8.8.1 Fuse and fuse-links
 8.8.8.2 Moulded-case circuit-breakers
 8.8.8.3 Miniature circuit-breakers
 8.8.8.4 Residual current devices
 8.8.8.5 Thermal-overload relays
 8.8.8.6 Electronic motor protection relays
 8.8.8.7 Thermistor and RTD motor protection devices
8.8.9 Switching devices
 8.8.9.1 Switches
 8.8.9.2 Selector switches
8.8.10 Contactors
8.8.11 Push-buttons
8.8.12 Emergency stop-buttons
8.8.13 Time-switches
8.8.14 Control devices
 8.8.14.1 Control relays
 8.8.14.2 Time-delay relays and timers
8.8.15 ELV control transformers
8.8.16 Current transformers
8.9 INSTRUMENTATION (DISPLAYS)
8.10 WIRE NUMBERING CONVENTION
8.11 SYSTEMS INCORPORATING PROGRAMMABLE CONTROLLER / TELEMETRY RTU
 8.11.1 Digital inputs and outputs
 8.11.2 Analog inputs and outputs
 8.11.3 Address codes for communication link devices
8.12 SYSTEMS INCORPORATING RELAY CONTROL
 8.12.1 General
 8.12.2 Loop tag definition guidelines

9 WET-WELL PIPEWORK
9.1 PUMP DISCHARGE PIPEWORK
 9.1.1 General
 9.1.2 Sizing
 9.1.3 Type
9.2 VALVE APPLICATIONS
 9.2.1 Isolating valves
 9.2.2 Non-return valves
 9.2.3 Scour/Emergency by-pass connection
 9.2.4 Sewage air-release valves
9.3 VALVE CHAMBER
 9.3.1 General
 9.3.2 Design
 9.3.3 Dismantling joints
 9.3.4 Pipework support
 9.3.5 Pressure main tappings
 9.3.6 Access covers
9.4 EMERGENCY PUMPING ARRANGEMENTS
 9.4.1 Condition monitoring and maintenance
10 PRESSURE MAIN
10.1 DESIGN
 10.1.1 General
10.2 LOCATION OF PRESSURE MAINS
 10.2.1 General
 10.2.2 Road reserves
 10.2.3 Railway reserves
 10.2.4 Alignment
 10.2.5 Changes in direction
 10.2.6 Easements
10.3 HYDRAULIC DESIGN
 10.3.1 Total mean head
 10.3.2 Mean static head
 10.3.3 Friction head loss
 10.3.4 Fitting head loss
 10.3.5 Velocity in pressure mains
 10.3.6 Sizing of pressure mains
10.4 DESIGN PRESSURES
 10.4.1 General
 10.4.2 Maximum design pressure
 10.4.3 Surge
 10.4.4 Maximum design pressure range
10.5 SELECTION OF PIPE AND FITTINGS PRESSURE CLASS
 10.5.1 General
 10.5.2 Maximum allowable operating pressure
 10.5.3 Maximum cyclic pressure range - Thermoplastics pipes and fittings
 10.5.4 Minimum pressure class
 10.5.5 Other considerations
10.6 PLASTICS PIPES
 10.6.1 Temperature de-rating of plastic pipes and fittings
 10.6.2 Fatigue design for thermoplastics pipes
 10.6.3 Fatigue design for thermoplastic fittings
 10.6.4 Fatigue design for thermosetting pipes and fittings
 10.6.5 Combined effects of fatigue and temperature
10.7 METALLIC PIPES AND FITTINGS
10.8 PIPELINE MATERIALS
10.9 PRESSURE MAIN VALVES
 10.9.1 General
 10.9.2 Isolating valves
 10.9.3 Gas release valves
 10.9.4 Non-return valves
 10.9.5 Scours
10.10 ODOUR AND SEPTICITY CONTROL
10.11 RECEIVING SYSTEM
 10.11.1 General
 10.11.2 Discharge MHs

11 STRUCTURAL DESIGN
11.1 DIFFICULT GROUND CONDITIONS
 11.1.1 Foundation design and ground water control
 11.1.2 Geotechnical assessment
11.2 STRUCTURES
 11.2.1 Design loads and forces
 11.2.2 Concrete structures
11.2.2.1 General
11.2.2.2 Concrete strength
11.2.2.3 Minimum cover
11.2.2.4 Crack control requirement for serviceability
11.2.2.5 Areas to be designed as liquid retaining surfaces
11.2.3 Steel structures
11.2.4 Foundations
11.2.5 Pumping station walls
11.2.6 Base slab
11.2.7 Top slab
11.2.8 Emergency storage structures

11.3 PRESSURE MAINS
11.3.1 General
11.3.2 Products and materials
11.3.3 Structural computations
11.3.4 External forces
 11.3.4.1 General
 11.3.4.2 Pipe cover
 11.3.4.3 Trench design
 11.3.4.4 Pipe embedment
11.3.5 Specific geotechnical considerations
 11.3.5.1 Pressure mains in engineered and/or controlled fill
 11.3.5.2 Pressure mains in non-engineered fill
 11.3.5.3 Filling along route of pressure main
 11.3.5.4 Mine subsidence
 11.3.5.5 Slip areas
 11.3.5.6 Water-charged ground
11.3.6 Above ground crossings
11.3.7 Bulkheads and trenchstops
11.3.8 Trenchless technology
11.3.9 Pressure main anchorage
 11.3.9.1 General
 11.3.9.2 Thrust blocks
 11.3.9.3 Anchor blocks
11.3.10 Restrained elastomeric seal joint pressure mains
11.3.11 Restraint requirements for special situations
 11.3.11.1 Above ground pressure mains with unrestrained flexible joints
 11.3.11.2 Steel mains with welded joints, buried
 11.3.11.3 Steel mains with welded joints, above ground
 11.3.11.4 Ductile iron or steel mains with flanged joints

12 SUPPORTING SYSTEMS
12.1 SERVICES
 12.1.1 General
 12.1.2 Water
 12.1.3 Telephone/Telemetry lines
 12.1.4 General lighting and power
 12.1.5 Drainage
 12.1.6 Water closet
12.2 MATERIALS HANDLING
 12.2.1 Lifting equipment
 12.2.2 Handling and storage of hazardous material
12.3 SECURITY
12.4 FIRE CONTROL

COPYRIGHT
13 HEALTH AND SAFETY
 13.1 GENERAL
 13.2 HAZARDS
 13.3 HEALTH AND SAFETY
 13.3.1 General
 13.3.2 Working at heights
 13.4 CONFINED SPACES

14 DESIGN REVIEW

15 DESIGN DOCUMENTATION AND DRAWINGS
 15.1 DOCUMENTATION
 15.2 DESIGN DRAWINGS
 15.2.1 General
 15.2.2 Real property information
 15.2.3 Pumping station and emergency storage
 15.2.4 Structures
 15.2.5 Pressure mains and sewers
 15.2.6 Longitudinal sections (profiles)
 15.2.7 Title block notation and standard notes
 15.2.8 Other
 15.2.9 Electrical and telemetry
 15.3 DRAFTING STANDARDS
 15.3.1 General
 15.3.2 Scale
 15.3.3 Recording of as-constructed information

APPENDIX A TYPICAL PRECOMMISSIONING CHECKLIST

APPENDIX B TYPICAL COMMISSIONING SCHEDULE

APPENDIX C AC VOLTAGE MITIGATION OF STEEL PIPELINES
 C1 INTRODUCTION
 C2 INDUCTIVE COUPLING HAZARD
 C3 CONDUCTIVE COUPLING HAZARD
 C4 CAPACITIVE COUPLING HAZARD
 C5 MITIGATION

APPENDIX D PRESSURE MAIN CALCULATOR
 D1 PRESSURE MAIN CALCULATOR
 D2 NOMENCLATURE
 D3 PRINCIPLES AND CRITERIA
 D3.1 Design flows
 D3.2 Detention time
 D3.3 Minimum internal diameter of pressure main
 D3.4 Maximum internal diameter of pressure main
 D3.5 Minimum pumping rate
 D3.6 Maximum pumping rate
 D3.7 Pump control volume (cut-in / cut-out volume) and pump starts
 D4 INSTRUCTIONS
 D4.1 Data entry
 D4.2 Internal diameter of pressure main
 D4.3 Pumping rate and detention time
 D4.4 Wet-well control volume / actual starts / detention time
APPENDIX E DETAILED DESIGN CHECKLIST

TABLES

TABLE 1.1 TYPICAL ASSET DESIGN LIFE
TABLE 3.1 CLEARANCES BETWEEN PRESSURE MAINS AND UNDERGROUND SERVICES
TABLE 5.1 DEFAULT CONTROL LEVELS
TABLE 8.1 DEFAULT ALARM LEVELS
TABLE 8.2 TYPICAL LOCAL AND REMOTE ALARMS
TABLE 8.3 TYPICAL REMOTE MONITORED CONDITIONS
TABLE 10.1 PRESSURE DE-RATING FACTORS FOR PLASTIC PIPES AT ELEVATED TEMPERATURES
TABLE 10.2 FATIGUE DE-RATING FACTORS FOR THERMOPLASTIC PIPES
TABLE 10.3 SCOUR SIZES
TABLE 11.1 REQUIREMENT FOR BULKHEADS

FIGURES

FIGURE 1.1 CONCEPT DESIGN FLOWCHART
FIGURE 2.1 SPS OVERFLOW RISK REDUCTION DECISION DIAGRAM
FIGURE 2.2 TYPICAL PRE-COMMISSIONING AND COMMISSIONING PROCESS
FIGURE 2.3 TYPICAL HANDOVER TO WATER AGENCY
FIGURE 3.1 DEFLECTION AT JOINTS
FIGURE 3.2 DEFLECTION USING SOC-SOC BENDS
FIGURE 3.3 DEFLECTION USING SOC-SOC CONNECTORS
FIGURE 5.1 TYPICAL EMERGENCY STORAGE – CONFIGURATION 1
FIGURE 5.2 TYPICAL EMERGENCY STORAGE – CONFIGURATION 2
FIGURE 5.3 TYPICAL EMERGENCY STORAGE – CONFIGURATION 3
FIGURE 5.4 TYPICAL EMERGENCY STORAGE – CONFIGURATION 4
FIGURE 8.1 ALARM LEVEL CONTROL SETTINGS
FIGURE 10.1 TYPICAL SURGE WAVE
FIGURE 10.2 TYPICAL FATIGUE CYCLE
Sewage Pumping Station
Code of Australia

WSA 04—2005

Part 2: Products and Materials

Second Edition
Version 2.1
CONTENTS

16 PRODUCTS AND MATERIALS OVERVIEW
 16.1 PURPOSE
 16.2 SCOPE
 16.3 RESPONSIBILITIES
 16.3.1 Water Agency
 16.3.2 Designer
 16.3.3 Constructor
 16.3.4 Purchaser
 16.4 PRODUCT AND MATERIAL STANDARDS AND SPECIFICATIONS
 16.4.1 Product standards
 16.4.2 Purchase specifications
 16.4.3 Purchase specifications—Alternatives
 16.5 QUALITY ASSURANCE
 16.5.1 Default requirement
 16.5.2 Additional information on quality assurance
 16.5.3 Innovative products and materials
 16.6 SELECTION GUIDE FOR PIPELINE SYSTEMS
 16.7 ADDITIONAL PRODUCT AND MATERIAL INFORMATION

APPENDIX F
 F1 GENERAL
 F2 QUALITY ASSURANCE OPTIONS
 F2.1 ISO 9000 quality management system certification
 F2.2 Product certification
 F2.2.1 General
 F2.2.2 Product certification – Type 1
 F2.2.3 Product certification – Type 3
 F2.2.4 Product certification – Type 5
 F2.3 Supplier’s declaration of conformance
 F2.4 Second party verification
 F3 FACTORS INFLUENCING SELECTION OF QUALITY ASSURANCE OPTIONS
 F3.1 General factors
 F3.2 Likelihood of manufacturing non-conformance
 F3.3 Likelihood of failure of pipeline system from a product non-conformance
 F3.4 Consequences of failure
 F3.5 Product specification
 F3.6 Project magnitude / management
 F3.7 Innovative products
 F4 SELECTING THE QUALITY ASSURANCE OPTION
 F4.1 General factors
 F4.2 Product certification
 F4.2.1 General
 F4.2.2 Type 1
 F4.2.3 Type 3
 F4.2.4 Type 5
 F4.3 ISO 9000 quality management system certification
 F4.4 Supplier’s declaration of conformance
 F4.5 Second party verification
TABLES

TABLE 16.1 PRINCIPAL PRESSURE MAINS AND COMPONENTS
TABLE 16.2 PRECAUTIONS, LIMITATIONS, ADVANTAGES AND DISADVANTAGES
17 GENERAL
 17.1 SCOPE
 17.2 INTERPRETATION

18 QUALITY
 18.1 QUALITY ASSURANCE
 18.1.1 General
 18.1.2 Quality management system
 18.1.3 Quality system
 18.1.4 Project management plan
 18.1.5 Inspection and test plans
 18.1.6 Quality tests
 18.1.7 Quality audits
 18.1.8 Traceability
 18.1.9 Quality records
 18.1.10 Inspection
 18.2 PERSONNEL QUALIFICATIONS

19 GENERAL CONSTRUCTION
 19.1 GENERAL
 19.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 19.2.1 Pumping stations
 19.2.2 Inlet works, emergency storage and ERS
 19.2.3 Pressure mains
 19.3 CONTRACT INTERFACES
 19.4 CUSTOMER FOCUS
 19.4.1 General
 19.4.2 Resolution of complaints
 19.5 PROTECTION OF PEOPLE, PROPERTY AND ENVIRONMENT
 19.5.1 Safety of people
 19.5.2 Protection of other services
 19.5.3 Disused / Redundant sewers and pressure mains
 19.5.4 Road reserves or other thoroughfares
 19.5.4.1 Treatment of pavements and other surfaces
 19.5.4.2 Traffic management
 19.5.4.3 Cleanliness of roads, paths, accesses and drainage paths
 19.5.4.4 Storage of products, materials and equipment
 19.5.4.5 Obstruction of street drainage
 19.5.5 Private and public properties
 19.5.6 Protection of the environment and heritage areas
 19.5.6.1 General
 19.5.6.2 Collection and disposal of wastes
 19.5.6.3 Protection of adjacent lands and vegetation
 19.5.6.4 Control of water pollution
 19.5.6.5 Acid sulphate and contaminated soils
 19.5.6.6 Control of noise and atmospheric pollution
 19.6 AFFECTED PARTY NOTIFICATIONS
 19.7 ALTERATION OF EXISTING SERVICES
 19.8 SURVEY MARKS
19.9 CONSTRUCTION TOLERANCES
19.10 LATENT CONDITIONS

20 PRODUCTS, MATERIALS AND EQUIPMENT
20.1 AUTHORISED PRODUCTS AND MATERIALS
20.2 REJECTED PRODUCTS AND MATERIALS
20.3 ELECTRICAL EQUIPMENT
20.4 PUMPS
20.5 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
20.6 DELIVERY AND STORAGE OF ELECTRICAL EQUIPMENT
20.7 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
20.8 FASTENERS
20.9 WORKS INSPECTION AND TESTING
 20.9.1 Switchboards
 20.9.2 Pumps
 20.9.3 Motors
20.10 CONCRETE WORKS
 20.10.1 Delivery
 20.10.2 Transportation of concrete
 20.10.3 Formwork
 20.10.4 Reinforcement
 20.10.5 Placement
 20.10.5.1 General
 20.10.5.2 Placement in water
 20.10.6 Slump
 20.10.7 Compaction
 20.10.8 Stripping
 20.10.9 Curing
 20.10.10 Repair of blemishes
20.11 SUPPLY OF WATER TO THE WORKS
20.12 ON-SITE STOCKPILES

21 ELECTRICAL WORKS
21.1 COMPLIANCE WITH AUTHORITIES, STATUTES, REGULATIONS AND STANDARDS
21.2 SCOPE OF WORK
21.3 SUPPLY AUTHORITY REQUIREMENTS AND METERING
21.4 CONSUMER MAINS
 21.4.1 Point of supply
 21.4.2 Cable size
 21.4.3 Maximum demand
 21.4.4 Calculations to be submitted
 21.4.5 Mains in reserves
 21.4.6 Mains requirements
 21.4.7 Lead-in pole and overhead mains construction
 21.4.7.1 Lead-in pole
 21.4.7.2 Poles
 21.4.7.3 Installation of poles
 21.4.7.4 Aerial cables
 21.4.8 Underground cable installation
 21.4.8.1 General
21.4.8.2 Location
21.4.8.3 Excavation and bedding
21.4.8.4 Underground cable marking
21.4.8.5 Cable installation on poles
21.4.8.6 Road crossings

21.5 EARTHING
21.5.1 General
21.5.2 Earth circuits
21.5.3 Labelling

21.6 SWITCHBOARD INSTALLATION
21.6.1 General
21.6.2 Equipment mounting
21.6.3 Thermal derating of equipment
21.6.4 Labelling
21.6.4.1 General
21.6.4.2 Incoming mains and pump and motor detail labels
21.6.4.3 Main labels
21.6.4.4 Cubicle labels
21.6.4.5 Danger notices
21.6.4.6 Asset and equipment number labels

21.7 CIRCUITS
21.7.1 Main circuits
21.7.2 Control circuit wiring

21.8 CABLELING
21.8.1 General
21.8.2 Conduits
21.8.3 Cable protection
21.8.4 Cable trays
21.8.5 Junction boxes

21.9 INSTALLATION OF PUMP CABLES
21.9.1 Numbering of pumps
21.9.2 Installation

21.10 INSTALLATION OF LEVEL SENSORS
21.10.1 General
21.10.2 Wet-well level sensor probes

21.11 TERMINATIONS
21.11.1 General
21.11.2 Glands
21.11.3 Mains and pump terminations

21.12 PAINTING
21.12.1 General
21.12.2 Paint materials
21.12.3 Surface preparation
21.12.4 Painting and finish

21.13 INSTALLATION IN VALVE PITS
21.13.1 General
21.13.2 Cables

21.14 NOTIFICATION OF ELECTRICAL WORK

22 TELEMETRY SYSTEM
22.1 COMPLIANCE WITH AUTHORITIES, STATUTES, REGULATIONS AND STANDARDS
22.2 SCOPE OF WORK
22.3 HARDWARE INSTALLATION
22.4 PLC PROGRAMMING
22.5 SCADA DATABASE CONFIGURATION

23 ODOUR CONTROL SYSTEM

24 MECHANICAL INSTALLATION OF PUMPS, VALVES AND FITTINGS
 24.1 GENERAL
 24.2 FLANGED JOINTS
 24.3 INSTALLATION OF PUMPING UNITS
 24.3.1 General
 24.3.2 Machinery alignment
 24.3.3 Unit numbers
 24.3.4 Test tapping points
 24.4 GAUGES AND RECORDERS
 24.4.1 Pressure gauges
 24.4.2 Pressure recorder

25 METALWORK
 25.1 STEELWORK
 25.2 ALUMINIUM ALLOY COMPONENTS
 25.3 STAINLESS STEEL COMPONENTS
 25.4 FASTENERS

26 ACCESS ROAD AND HARDSTAND AREAS
 26.1 GENERAL
 26.2 SUBGRADE
 26.3 BASECOURSE
 26.4 SPRAYED BITUMINOUS SEALING
 26.5 ASPHALTIC CONCRETE
 26.6 TIMBER GUARDRAIL

27 RETAINING WALLS
 27.1 RETAINING WALLS - TIMBER CANTILEVER
 27.1.1 General
 27.1.2 Handrails
 27.2 RETAINING WALLS - CONCRETE - CRIB WALL
 27.2.1 General
 27.2.2 Foundations
 27.2.3 Cribfill and backfill
 27.2.4 Drainage
 27.2.5 Handrails

28 EXCAVATION
 28.1 SAFETY
 28.2 LIMITS OF EXCAVATION
 28.3 EXCAVATION ACROSS IMPROVED SURFACES
 28.4 EXCAVATION IN ROOT ZONES
 28.5 BLASTING
 28.6 SUPPORT OF EXCAVATIONS
 28.7 DRAINAGE AND DEWATERING
28.8 FOUNDATIONS AND FOUNDATION STABILISATION
28.9 SURPLUS EXCAVATED MATERIAL

29 BEDDING FOR PIPES, BENDS, WET-WELLS AND MAINTENANCE STRUCTURES
29.1 TRENCH FLOOR PREPARATION
29.2 BEDDING MATERIALS
29.3 PLACEMENT OF BEDDING
29.4 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS
29.5 BEDDING FOR PIPES, VALVES AND FITTINGS
29.6 BEDDING FOR CONCRETE STRUCTURES
29.7 BEDDING FOR MAINTENANCE SHAFTS AND VARIABLE BENDS

30 PIPE LAYING AND JOINTING
30.1 INSTALLATION OF PIPES
 30.1.1 General
 30.1.2 Cleaning, inspection and joint preparation
 30.1.3 Polyethylene
 30.1.4 Laying
30.2 HORIZONTAL AND VERTICAL DEFLECTION OF GRAVITY SEWERS AND PRESSURE MAINS
 30.2.1 General
 30.2.2 Methods of deflection
30.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
30.4 FLOTATION CONTROL
30.5 THRUST AND ANCHOR BLOCKS AND RESTRAINED JOINTS FOR PRESSURE MAINS
30.6 MARKING TAPES
 30.6.1 Non-detectable marking tape
 30.6.2 Detectable marking tape
30.7 VALVES AND SURFACE FITTINGS
 30.7.1 Installation
 30.7.2 Scours for pressure mains
30.8 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
30.9 BRIDGE CROSSINGS
30.10 TRENCH STOPS FOR PRESSURE MAINS
30.11 BULKHEADS FOR PRESSURE MAINS
30.12 CORROSION PROTECTION OF CAST IRON FOR PRESSURE MAINS
30.13 AQUEDUCTS
30.14 LOCATION MARKERS
30.15 FLANGED JOINTS
30.16 WELDING OF STEEL PRESSURE MAINS
 30.16.1 General
 30.16.2 Field welding of flanges

31 WET-WELLS AND MAINTENANCE HOLES (MHS)
31.1 GENERAL
31.2 WET-WELL AND MH BASES
31.3 TRENCH DRAINAGE AROUND WET-WELLS AND MHS
31.4 PRECAST CONCRETE SYSTEMS
31.5 CAST IN-SITU CONCRETE WET-WELLS AND MHS
31.6 BENCHING AND CHANNELS
31.7 INTERNAL COATING OF CONCRETE WET-WELLS AND MHS
31.8 COVERS
31.9 CONNECTIONS TO WET-WELLS AND MHS
31.10 MH DROPS

32 PIPE EMBEDMENT AND SUPPORT
32.1 GENERAL
32.2 EMBEDMENT MATERIALS
32.3 COMPACTION OF EMBEDMENT
 32.3.1 General
 32.3.2 Methods
 32.3.3 Compaction trials/Pre-qualification of embedment compaction method
 32.3.3.1 General
 32.3.3.2 Test method
 32.3.3.3 Interpretation and applicability
 32.3.4 Compaction control
32.4 SPECIAL BEDDING AND EMBEDMENTS/GEOTEXTILE SURROUND AND PILLOW
32.5 REMOVAL OF TRENCH SUPPORTS
32.6 CONCRETE EMBEDMENT AND ENCASEMENT

33 FILL
33.1 TRENCH FILL
33.2 GENERAL
33.3 MATERIAL REQUIREMENTS
33.4 COMPACTION OF TRENCH FILL
33.5 EMBANKMENT FILL
33.6 DRIVES AND TUNNEL FILL

34 CONNECTION TO EXISTING GRAVITY SEWERS

35 RESTORATION
35.1 GENERAL
35.2 PAVEMENTS
35.3 LAWNS
35.4 GRASSED AREAS
35.5 BUSHLAND
35.6 PROVISION FOR SETTLEMENT
35.7 MAINTENANCE OF RESTORED SURFACES

36 ACCEPTANCE TESTING
36.1 PIPELINES
36.2 VISUAL EXTERNAL INSPECTION
36.3 COMPACTION TESTING
 36.3.1 General
 36.3.2 Minimum compaction
 36.3.3 Embedment compaction testing
 36.3.3.1 Applicable pipe sizes
 36.3.3.2 Frequency and location of embedment tests
 36.3.3.3 Retesting
 36.3.4 Trench fill compaction testing
 36.3.4.1 Trafficable test zone
 36.3.4.2 Non-trafficable test zone
 36.3.4.3 Test method
 36.3.4.4 Frequency and location of tests
36.3.4.5 Retesting
36.3.5 Other fill compaction testing
 36.3.5.1 General
 36.3.5.2 Trafficable test zone
 36.3.5.3 Non-trafficable test zone
 36.3.5.4 Frequency and location of tests
 36.3.5.5 Retesting
36.4 AIR PRESSURE AND VACUUM TESTING OF GRAVITY SEWERS
 36.4.1 General
 36.4.2 Air testing methods for sewers
 36.4.2.1 Vacuum testing
 36.4.2.2 Low pressure air testing
 36.4.3 Testing of concrete emergency storage and maintenance structures
 36.4.3.1 General
 36.4.3.2 Test method
36.5 HYDROSTATIC PRESSURE TESTING OF PRESSURE MAINS
 36.5.1 General
 36.5.2 System test pressure
 36.5.3 Maximum allowable loss
 36.5.4 Test procedure
 36.5.5 Satisfactory pressure test
 36.5.6 Failure of test
36.6 INFILTRATION TESTING
36.7 DEFLECTION (OVALLTY) TESTING OF FLEXIBLE GRAVITY SEWERS
 36.7.1 General
 36.7.2 Ovality proving tools
 36.7.3 Flexible sewers ≤DN 300
36.8 CCTV INSPECTION
36.9 ELECTRICAL WORKS

37 COMMISSIONING
 37.1 GENERAL
 37.2 PUMPING STATION
 37.2.1 Requirements
 37.2.2 Pre-commissioning
 37.2.3 Commissioning
 37.2.4 Handover
 37.3 ODOUR CONTROL SYSTEM

38 TOLERANCES ON AS-CONSTRUCTED WORK
 38.1 HORIZONTAL TOLERANCES
 38.1.1 Sewers, mains, valves, in-line structures, pumping stations, roads
 38.2 VERTICAL TOLERANCES
 38.2.1 Sewers, pressure mains, structures, pumping stations, roads
 38.2.2 Grade
 38.3 VERTICALITY (“PLUMB”)
 38.4 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
 38.5 CAST IN-SITU CONCRETE STRUCTURES AND SLABS

39 WORK AS-CONSTRUCTED DETAILS
 39.1 GENERAL
 39.2 ELECTRICAL WORKS
39.2.1 Electrical Contractors Installation Drawings
39.2.2 Principal Supplied Installation Drawings and Equipment Schedules

APPENDIX G OVALITY TESTING OF PVC AND GRP GRAVITY SEWERS DEFAULT PROVER DIAMETERS
 G1 GENERAL
 G2 DEFAULT PROVER DIAMETERS

TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.1</td>
<td>CONTROL CIRCUIT WIRING INSULATION COLOUR CODING</td>
</tr>
<tr>
<td>26.1</td>
<td>TIMBER GUARDRAIL DEFAULT CONSTRUCTION DIMENSIONS</td>
</tr>
<tr>
<td>27.1</td>
<td>RETAINING WALL DEFAULT CONSTRUCTION DIMENSIONS</td>
</tr>
<tr>
<td>27.2</td>
<td>TIMBER HANDRAIL DEFAULT CONSTRUCTION DIMENSIONS</td>
</tr>
<tr>
<td>30.1</td>
<td>METHODS OF ACHIEVING CURVED PIPELINES</td>
</tr>
<tr>
<td>32.1</td>
<td>MAXIMUM PARTICLE SIZE</td>
</tr>
<tr>
<td>36.1</td>
<td>ORDER OF ACCEPTANCE TESTING OF CIVIL ITEMS</td>
</tr>
<tr>
<td>36.2</td>
<td>MINIMUM COMPACTION OF EMBEDMENT AND TRENCH / EMBANKMENT / OTHER FILLS</td>
</tr>
<tr>
<td>36.3</td>
<td>PRESSURE AND VACUUM AIR TESTING ACCEPTANCE TIMES FOR 7 KPA PRESSURE CHANGE</td>
</tr>
<tr>
<td>36.4</td>
<td>CONCRETE MH TESTING FREQUENCY</td>
</tr>
<tr>
<td>36.5</td>
<td>MINIMUM TEST TIMES FOR CONCRETE STRUCTURES</td>
</tr>
<tr>
<td>38.1</td>
<td>SEWER GRADE TOLERANCES</td>
</tr>
<tr>
<td>G1</td>
<td>PROVER OUTSIDE DIAMETER FOR PVC AND GRP PIPES</td>
</tr>
<tr>
<td>G2</td>
<td>MAXIMUM ALLOWABLE SHORT-TERM PIPE DEFLECTIONS</td>
</tr>
</tbody>
</table>
CONTENTS

40 INTRODUCTION
40.1 GENERAL
40.2 DRAWING COMMENTARY

41 LISTING OF STANDARD DRAWINGS
Listing of Standard Drawings

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANNING AND CONCEPT DESIGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1100</td>
<td>Concept Plan</td>
<td>Typical Catchment Plan</td>
</tr>
<tr>
<td>SPS–1101</td>
<td>Pumping Station Concept Design</td>
<td>Site Layout</td>
</tr>
<tr>
<td>SPS–1102</td>
<td>Pumping Station Concept Design</td>
<td>Site Plan</td>
</tr>
<tr>
<td>SPS–1103</td>
<td>Pumping Station Concept Design</td>
<td>Power and Control Cubicle, Base and Conduit Details</td>
</tr>
<tr>
<td>SPS–1104</td>
<td>Pressure Main Concept Design</td>
<td>Sections and Mean Static Head Calculation</td>
</tr>
<tr>
<td>PUMPING STATION LAYOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1200</td>
<td>Typical Site Plan – Sydney Water</td>
<td>Fronting and Not Fronting Adjacent Roadway</td>
</tr>
<tr>
<td>SPS–1201</td>
<td>Typical Site Plan – SA Water</td>
<td>Fronting Adjacent Roadway</td>
</tr>
<tr>
<td>SPS–1202</td>
<td>Typical Site Plan – SA Water</td>
<td>Not Fronting Adjacent Roadway</td>
</tr>
<tr>
<td>SPS–1203</td>
<td>Typical Site Plan – Brisbane Water</td>
<td>Fronting Adjacent Roadway</td>
</tr>
<tr>
<td>SPS–1204</td>
<td>Typical Site Plan – Water Corporation</td>
<td>Fronting Adjacent Roadway</td>
</tr>
<tr>
<td>SPS–1205</td>
<td>Access Roadway</td>
<td>Cross Section and Drainage Details</td>
</tr>
<tr>
<td>PUMPING STATION ARRANGEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1300</td>
<td>General Arrangement</td>
<td>Inlet MH, Wet-Well and Valve Chamber</td>
</tr>
<tr>
<td>SPS–1301</td>
<td>Detailed Arrangement</td>
<td>Wet-Well, Buried Valves, DN 100 Pipework</td>
</tr>
<tr>
<td>SPS–1302</td>
<td>Civil Plan</td>
<td>Wet-Well and Valve Chamber</td>
</tr>
<tr>
<td>SPS–1303</td>
<td>Wet-Well Construction</td>
<td>Pre-Cast Concrete Components</td>
</tr>
<tr>
<td>SPS–1304</td>
<td>Wet-Well Construction</td>
<td>Cover and Access Hole Details</td>
</tr>
<tr>
<td>SPS–1305</td>
<td>Electrical and Telemetry</td>
<td>Conduit Details</td>
</tr>
<tr>
<td>SPS–1306</td>
<td>Valve Chamber Adjacent to Wet-Well</td>
<td>Plan, Section and Cover – Non-Trafficable</td>
</tr>
<tr>
<td>SPS–1307</td>
<td>Valve Chamber Adjacent to Wet-Well</td>
<td>Pipework</td>
</tr>
<tr>
<td>SPS–1308</td>
<td>Water Supply</td>
<td>Reduced Pressure Zone Arrangement</td>
</tr>
<tr>
<td>SPS–1309</td>
<td>Mobile Pump Connection Arrangement</td>
<td>Pumping Stations ≤40 L/s</td>
</tr>
<tr>
<td>SPS–1310</td>
<td>Mobile Pump Connection Arrangement</td>
<td>Pumping Stations >40 L/s</td>
</tr>
<tr>
<td>STRUCTURES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1400</td>
<td>Grit Collection MH</td>
<td>Detailed Arrangement</td>
</tr>
<tr>
<td>SPS–1401</td>
<td>Grit Collection MH</td>
<td>Detailed Arrangement</td>
</tr>
<tr>
<td>SPS–1402</td>
<td>Emergency Storage</td>
<td>Typical Arrangement and Levels Configuration 1</td>
</tr>
<tr>
<td>SPS–1403</td>
<td>Emergency Storage Details</td>
<td>Shallow and Deep Installations and Brickwork</td>
</tr>
<tr>
<td>SPS–1404</td>
<td>Emergency Relief System</td>
<td>Arrangement and Cross Section for DN 150 to DN 375 Overflow Pipes</td>
</tr>
<tr>
<td>SPS–1405</td>
<td>Discharge MH</td>
<td>Arrangement and Cross Section for Pressure Mains ≤ DN 300</td>
</tr>
<tr>
<td>SEW–1300</td>
<td>Maintenance Holes</td>
<td>Sewers ≤ DN 300 Precast Types P1 & P2</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>SEW–1301</td>
<td>Maintenance Holes</td>
<td>Sewers ≤ DN 300, Cast In Situ Types C1 & C2</td>
</tr>
<tr>
<td>SEW–1302</td>
<td>Maintenance Holes</td>
<td>Pipe Connection Details</td>
</tr>
<tr>
<td>SEW–1303</td>
<td>Maintenance Holes</td>
<td>Sewers ≤ DN 300, Changes in Level Details</td>
</tr>
<tr>
<td>SEW–1304</td>
<td>Maintenance Holes</td>
<td>For Sewers ≤ DN 300, Typical Channel Arrangements</td>
</tr>
<tr>
<td>SEW–1305</td>
<td>Maintenance Holes</td>
<td>Typical Channel Details</td>
</tr>
<tr>
<td>SEW–1306</td>
<td>Maintenance Holes</td>
<td>Alternative Drop Connections</td>
</tr>
<tr>
<td>SEW–1307</td>
<td>Maintenance Holes</td>
<td>Step Irons & Ladders</td>
</tr>
<tr>
<td>SEW–1308</td>
<td>Maintenance Holes</td>
<td>Typical MH Cover Arrangements</td>
</tr>
<tr>
<td>SEW–1313</td>
<td>Maintenance Holes</td>
<td>MH Connection Details, DN 110 to DN 450 PE Pipe</td>
</tr>
<tr>
<td>SEW–1314</td>
<td>Maintenance Shafts</td>
<td>Typical Installation</td>
</tr>
<tr>
<td>SEW–1315</td>
<td>Maintenance Shafts</td>
<td>MS & Variable Bend Installations</td>
</tr>
<tr>
<td>SEW–1316</td>
<td>Maintenance Shafts</td>
<td>TMS and Connection Installations</td>
</tr>
<tr>
<td>SEW–1317</td>
<td>Maintenance Holes</td>
<td>Typical MS Cover Arrangements</td>
</tr>
<tr>
<td>SPS–1500</td>
<td>Pump to Pressure Main Connection</td>
<td>Hose Connection Bend Assemblies</td>
</tr>
<tr>
<td>SPS–1501</td>
<td>Pump to Pressure Main Connection</td>
<td>Wall Pipe Bracket Assemblies</td>
</tr>
<tr>
<td>SPS–1502</td>
<td>Pump to Pressure Main Connection</td>
<td>Wall Pipe Bracket Details</td>
</tr>
<tr>
<td>SPS–1503</td>
<td>Pump to Pressure Main Connection</td>
<td>Hose Connection Bends</td>
</tr>
<tr>
<td>SPS–1504</td>
<td>Pump to Pressure Main Connection</td>
<td>Hose Connection Bend Quick Coupling Details</td>
</tr>
<tr>
<td>SPS–1505</td>
<td>Hydraulic Level Sensor</td>
<td>Stilling Tube</td>
</tr>
<tr>
<td>SPS–1506</td>
<td>External Hinged Covers</td>
<td>Opening Grate Type</td>
</tr>
<tr>
<td>SPS–1507</td>
<td>External Hinged Covers</td>
<td>Opening Grate Type</td>
</tr>
<tr>
<td>SPS–1508</td>
<td>Miscellaneous Details</td>
<td>Survey Plate, Pump Label Plate, Valve Spindle Access</td>
</tr>
</tbody>
</table>

WET-WELL APPURtenances

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPS–1600</td>
<td>Design</td>
<td>Typical Pressure Main Characteristic Curve</td>
</tr>
<tr>
<td>SPS–1601</td>
<td>Pipe Installation, Support and Trench Fill</td>
<td>Pressure Mains ≤DN 300</td>
</tr>
<tr>
<td>SPS–1602</td>
<td>Scour Arrangement</td>
<td>Pump and Gravity</td>
</tr>
<tr>
<td>SPS–1603</td>
<td>Scour Arrangement</td>
<td>Pressure Mains ≤DN 300 ≤2.2 m to Invert</td>
</tr>
<tr>
<td>SPS–1604</td>
<td>Scour Arrangement</td>
<td>Pressure Mains ≤DN 300 >2.2 m to Invert</td>
</tr>
<tr>
<td>SPS–1605</td>
<td>Gas Release Arrangement</td>
<td>Pressure Mains ≤DN 300</td>
</tr>
<tr>
<td>SPS–1606</td>
<td>Gas Release Arrangement</td>
<td>Pressure Mains >DN 300</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SEW–1200</td>
<td>Soil Classification Guidelines And</td>
<td>Allowable Bearing Pressures for Bulkheads</td>
</tr>
<tr>
<td>SEW–1201</td>
<td>Embedment and Trenchfill</td>
<td>Typical Arrangements</td>
</tr>
<tr>
<td>SEW–1202</td>
<td>Standard Embedment</td>
<td>Flexible & Rigid Pipes</td>
</tr>
<tr>
<td>SEW–1203</td>
<td>Special Embedment</td>
<td>Inadequate Foundations Requiring Over Excavation & Replacement</td>
</tr>
<tr>
<td>SEW–1204</td>
<td>Special Embedment</td>
<td>Support Utilising Piles</td>
</tr>
<tr>
<td>SEW–1206</td>
<td>Trench Drainage</td>
<td>Bulkheads & Trenchstop</td>
</tr>
<tr>
<td>SEW–1207</td>
<td>Trench Drainage</td>
<td>Typical Systems</td>
</tr>
<tr>
<td>SEW–1208</td>
<td>Verticals & Near Verticals</td>
<td>Exposed & Concealed Methods</td>
</tr>
<tr>
<td>WAT–1201</td>
<td>Embedment & Trenchfill</td>
<td>Typical Arrangement</td>
</tr>
<tr>
<td>WAT–1202</td>
<td>Standard Embedment</td>
<td>All Pipe Types</td>
</tr>
<tr>
<td>WAT–1203</td>
<td>Special Embedments</td>
<td>Inadequate and Poor Foundation</td>
</tr>
<tr>
<td>WAT–1204</td>
<td>Special Embedments</td>
<td>Concrete, Geotextile and Cement Stabilised Systems</td>
</tr>
<tr>
<td>WAT–1205</td>
<td>Thrust Block Details</td>
<td>Concrete Blocks</td>
</tr>
<tr>
<td>WAT–1206</td>
<td>Thrust Block Details</td>
<td>Timber & Recycled Plastic Blocks</td>
</tr>
<tr>
<td>WAT–1207</td>
<td>Thrust and Anchor Blocks</td>
<td>Gate Valves and Vertical Bends</td>
</tr>
<tr>
<td>WAT–1208</td>
<td>Restrained Joint System</td>
<td>DN 100 to DN 375 DI Mains</td>
</tr>
<tr>
<td>WAT–1209</td>
<td>Trench Drainage</td>
<td>Bulkheads and Trenchstop</td>
</tr>
<tr>
<td>WAT–1210</td>
<td>Trench Drainage</td>
<td>Typical Systems</td>
</tr>
<tr>
<td>WAT–1211</td>
<td>Buried Crossings</td>
<td>Under Obstructions</td>
</tr>
<tr>
<td>WAT–1212</td>
<td>Buried Crossings</td>
<td>Major Roadways</td>
</tr>
<tr>
<td>WAT–1213</td>
<td>Buried Crossings</td>
<td>Railways</td>
</tr>
<tr>
<td>WAT–1214</td>
<td>Buried Crossings</td>
<td>Bored & Jacked Encasing Pipe Details</td>
</tr>
</tbody>
</table>

SPECIAL CROSSINGS / STRUCTURES ARRANGEMENTS

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEW–1400</td>
<td>Buried Crossings</td>
<td>Syphon Arrangement</td>
</tr>
<tr>
<td>SEW–1401</td>
<td>Buried Crossings</td>
<td>Railways</td>
</tr>
<tr>
<td>SEW–1402</td>
<td>Buried Crossings</td>
<td>Major Roadways</td>
</tr>
<tr>
<td>SEW–1403</td>
<td>Buried Crossings</td>
<td>Bored & Jacked Encasing Pipe Details</td>
</tr>
<tr>
<td>SEW–1406</td>
<td>Aerial Crossings</td>
<td>Bridge Crossing Concepts</td>
</tr>
<tr>
<td>SEW–1407</td>
<td>Ventilation Systems</td>
<td>Induct Vent</td>
</tr>
<tr>
<td>SEW–1408</td>
<td>Ventilation Systems</td>
<td>Educt Vent</td>
</tr>
</tbody>
</table>

COPYRIGHT
<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WAT–1300</td>
<td>Valve and Hydrant Identification</td>
<td>Identification Markers & Marker Posts</td>
</tr>
<tr>
<td>WAT–1303</td>
<td>Typical Surface Fitting Installation</td>
<td>Gate Valve Surface Boxes Non Trafficable</td>
</tr>
<tr>
<td>WAT–1304</td>
<td>Typical Surface Fitting Installation</td>
<td>Gate Valve Surface Boxes Trafficable</td>
</tr>
<tr>
<td>WAT–1307</td>
<td>Typical Appurtenance Installation</td>
<td>Scour Arrangements</td>
</tr>
<tr>
<td>WAT–1310</td>
<td>Aerial Crossings</td>
<td>Aqueduct</td>
</tr>
<tr>
<td>WAT–1311</td>
<td>Aerial Crossings</td>
<td>Aqueduct Protection Grille</td>
</tr>
<tr>
<td>WAT–1312</td>
<td>Aerial Crossings</td>
<td>Bridge Crossing Concepts</td>
</tr>
<tr>
<td>WAT–1313</td>
<td>Flanged Joints</td>
<td>Bolting Details</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>FABRICATION DETAILS</td>
</tr>
<tr>
<td>WAT–1400</td>
<td>Typical Steel Pipe Jointing</td>
<td>Butt Welding of Joints</td>
</tr>
<tr>
<td>WAT–1401</td>
<td>Typical Steel Pipe Jointing</td>
<td>Rubber Ring Joint Spigot Bands</td>
</tr>
<tr>
<td>WAT–1402</td>
<td>Typical Steel Pipe Jointing</td>
<td>Welded Pipe Collars</td>
</tr>
<tr>
<td>WAT–1403</td>
<td>Typical Steel Fabrication</td>
<td>Bends</td>
</tr>
<tr>
<td>WAT–1408</td>
<td>Joint Corrosion Protection</td>
<td>Cement Mortar Lined Steel Pipe DN 300 to DN 1200</td>
</tr>
<tr>
<td>WAT–1409</td>
<td>Hydrant Installation Fittings</td>
<td>PE Assemblies</td>
</tr>
</tbody>
</table>