Sewage Pumping Station
Code of Australia

WSA 04—2005-2.1

Sydney Water Edition
2012

Previous edition WSA 04—2001
Previous Sydney Water edition WSA 04 Version 1 2006
CONTENTS

PREFACE 6
INTRODUCTION 9

PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS

I Glossary of Terms 13
II Abbreviations 20
III Referenced Documents 25
IV Other References 32

PART 1: PLANNING AND DESIGN

Contents 36
1 General 45
2 Concept Design 53
3 General Design 64
4 Materials Design 72
5 Pumping Station Design 73
6 Pumping System 91
7 Power System 98
8 Control and Telemetry System 104
9 Pumping Station Pipework 117
10 Pressure Main 123
11 Structural Design 139
12 Supporting Systems 150
13 Health and Safety 153
14 Design Review 155
15 Design Documentation and Drawings 156

Appendix A Typical Precommissioning Checklist 161
Appendix B Commissioning Schedule 165
Appendix C AC Voltage Mitigation of Steel Pipelines 166
Appendix D Computer Program for Pressure Main Sizing 167
Appendix E Detailed Design Checklist 171
Appendix SW 1 Standard Pump Pedestal 181

PART 2: PRODUCTS AND MATERIALS

Contents 186
16 Products and Materials Overview 188

Appendix F Quality Assurance of Products 199
PART 3: CONSTRUCTION

Contents

17 General 206
18 Quality 213
19 General Construction 216
20 Products, Materials and Equipment 219
21 Electrical Works 227
22 Telemetry System 233
23 Odour Control System 246
24 Mechanical Installation of Pumps, Valves and Fittings 248
25 Metalwork 249
26 Access Road and Hardstand Areas 251
27 Retaining Walls 253
28 Excavation 255
29 Bedding for Pipes, Bends, Wet-Wells and Maintenance Structures 258
30 Pipe Laying and Jointing 260
31 Wet-Wells and Maintenance Holes (MHS) 261
32 Pipe Embedment and Support 267
33 Fill 269
34 Connection to Existing Gravity Sewers 272
35 Restoration 274
36 Acceptance Testing 277
37 Commissioning 288
38 Tolerances on As-Constructed Work 290
39 Work As-Constructed Details 292

Appendix G Ovality Testing of PVC and GRP Gravity Sewers Default Prover

PART 4: STANDARD DRAWINGS

Contents

40 Introduction 296
41 Listing of Standard Drawings 297

STANDARD DRAWINGS
Sewage Pumping Station
Code of Australia

WSA 04—2005-2.1

Sydney Water Edition
2012

Part 1: Planning and Design
CONTENTS

PREFACE

1 GENERAL
 1.1 SCOPE
 1.2 PLANNING
 1.2.1 General
 1.2.2 Pumping alternatives
 1.3 SEWAGE PUMPING STATIONS
 1.3.1 Pumping philosophy
 1.4 PURPOSE AND APPLICATION
 1.5 PLANNING AND DESIGN RESPONSIBILITIES AND INTERFACES
 1.5.1 General
 1.5.2 Planning responsibilities
 1.5.3 Design responsibilities
 1.5.4 Consultation with other parties
 1.6 SEWER SYSTEM DESIGN APPROACH
 1.6.1 Overall objective
 1.6.2 System design life
 1.6.3 Objectives of design
 1.6.4 Design output

2 CONCEPT DESIGN
 2.1 LIFE CYCLE CONSIDERATIONS
 2.2 FUNCTIONALITY
 2.3 MAINTAINABILITY
 2.4 RELIABILITY
 2.5 DUE DILIGENCE REQUIREMENTS
 2.6 MATERIALS DESIGN
 2.7 STAGING
 2.8 SEPTICITY CONTROL
 2.8.1 General
 2.8.2 Detention time
 2.9 ODOR CONTROL
 2.10 NOISE CONTROL
 2.11 SERVICES
 2.12 ACCESS
 2.13 SECURITY
 2.14 SIGNAGE
 2.15 SUPPORTING SYSTEMS
 2.16 HEALTH AND SAFETY
 2.17 COMMISSIONING PLAN
 2.17.1 General
 2.17.2 Pre-commissioning
 2.17.3 Commissioning

3 GENERAL DESIGN
 3.1 GENERAL
 3.2 DESIGN TOLERANCES
 3.3 LEVELS
 3.4 UNFORESEEN GROUND CONDITIONS
 3.5 IMPACT OF CONSEQUENTIAL DAMAGE
3.6 ENVIRONMENTAL CONSIDERATIONS
 3.6.1 General
 3.6.2 Urban salinity
 3.6.3 Effect on vegetation
 3.6.4 Contaminated sites
 3.6.5 Tidal zones
3.7 EASEMENTS
3.8 CROSSINGS
 3.8.1 General
 3.8.2 Creeks and drainage reserves
 3.8.3 Major roads
3.9 FUTURE MAINTENANCE
3.10 AC VOLTAGE MITIGATION OF METALLIC PIPELINES
3.11 OBSTRUCTIONS AND CLEARANCES
 3.11.1 General
 3.11.2 Surface obstructions
 3.11.3 Clearance from structures
 3.11.4 Underground obstructions and services
 3.11.4.1 General
 3.11.4.2 Clearance requirements
 3.11.5 Crossing services
 3.11.6 Deviation of pressure mains around structures
3.12 DISUSED OR REDUNDANT ITEMS
3.13 SEWAGE QUALITY
 3.13.1 Septicity
 3.13.2 Sewage quality/Trade waste management
4 MATERIALS DESIGN
 4.1 GENERAL
 4.2 CORROSION PROTECTION
 4.2.1 Protective coatings
 4.2.2 Concrete surfaces
 4.2.3 Metallic materials
 4.2.4 Miscellaneous items
 4.2.5 Corrosion protection against aggressive environments
 4.2.6 Cathodic protection
 4.2.7 Stray current corrosion
 4.2.8 Protection against contaminated ground
5 PUMPING STATION DESIGN
 5.1 INTRODUCTION
 5.2 SITE SELECTION, LOCATION AND LAYOUT
 5.2.1 Site selection
 5.2.2 Right of occupancy and access
 5.2.3 Location and layout
 5.2.4 Site area
 5.2.5 Site layout and access
 5.2.6 Landscaping
 5.3 INLET MH
 5.3.1 Location
 5.3.2 Design
 5.3.3 Pumping station wet-well stop valve
 5.4 WET-WELL DESIGN
 5.4.1 General
 5.4.2 Sizing
5.4.3 Pumping control volume and pump starts
5.4.4 Control levels
5.4.5 Detention time
5.4.6 Benching
5.4.7 Washers
5.5 WET-WELL VENTILATION
 5.5.1 Natural ventilation
 5.5.2 Forced ventilation
 5.5.3 Not used
5.6 OVERFLOW CONTAINMENT
 5.6.1 General
 5.6.2 Emergency storage
 5.6.2.1 General
 5.6.2.2 Configurations
 5.6.2.3 Design
 5.6.2.4 Access and cover arrangements
 5.6.2.5 Type of construction
 5.6.3 Future storage provisions
 5.6.4 Emergency relief system
5.7 LADDERS AND PLATFORMS
5.8 WET-WELL ACCESS COVERS
5.9 SAFETY SYSTEMS
5.10 GRIT COLLECTION
5.11 SCREENS
5.12 MIXERS

6 PUMPING SYSTEM
 6.1 STAGING
 6.2 HYDRAULIC DESIGN
 6.3 PUMP EQUIPMENT
 6.4 PUMP SELECTION
 6.5 TRIPLE-PUMP PUMPING STATIONS
 6.6 SUBMERSIBLE PUMPS
 6.6.1 General
 6.6.2 Impeller selection
 6.6.3 Motor selection
 6.6.4 Standard discharge connection
 6.6.5 Motor cables
 6.6.6 Pumpset lifting equipment
 6.7 ANCILLARY EQUIPMENT
 6.7.1 Flushing valves
 6.8 PUMP STARTERS AND VARIABLE SPEED DRIVES
 6.8.1 General
 6.8.2 Single and double speed starters
 6.8.3 Soft starters
 6.8.4 Variable speed drives
 6.9 HARMONICS AND RADIO FREQUENCY INTERFERENCE
 6.10 EMERGENCY STOP

7 POWER SYSTEM
 7.1 GENERAL
 7.2 POWER SUPPLIES
 7.2.1 General
 7.2.2 Security of supply
 7.2.3 Primary supply
7.2.4 Duplicate supply
7.2.5 Emergency power
7.2.6 On-site generator
7.2.7 Mobile generator
7.2.8 High voltage/Low voltage switching
7.2.9 Power factor correction

7.3 POWER AND CONTROL CUBICLE

7.3.1 Design
7.3.2 Low voltage switchboards
 7.3.2.1 Standards
 7.3.2.2 Construction
 7.3.2.3 Rated diversity factor
 7.3.2.4 Degree of protection
 7.3.2.5 Rated insulation and operating voltages
 7.3.2.6 Creepage distances
 7.3.2.7 Rated impulse withstand voltage
 7.3.2.8 Rated short-time current
 7.3.2.9 Internal arcing fault protection
7.3.3 Meter requirements
7.3.4 Lighting

8 CONTROL AND TELEMETRY SYSTEM

8.1 GENERAL
8.2 OPERATING LEVELS AND SETTINGS
8.3 PUMPING CONTROL
 8.3.1 Control design
 8.3.2 Control switches
 8.3.3 Control systems
 8.3.4 Emergency back-up control
 8.3.5 Pump starts and interlocks
8.4 ALARMS
 8.4.1 General
 8.4.2 Locally displayed alarms
 8.4.3 Remote alarms
8.5 ALARM, STATUS MONITORING AND CONTROL TELEMETRY
 8.5.1 General design principles
 8.5.2 Reliability
 8.5.3 Alarm creation function
 8.5.4 Status monitoring function
 8.5.5 Control function
8.6 TELEMETRY HARDWARE
 8.6.1 General
 8.6.2 Software
 8.6.3 Inputs and outputs
 8.6.4 Telemetry communications
 8.6.5 Communication validation
8.7 OPERATING LEVELS AND DEFAULT SETTINGS
 8.7.1 General
 8.7.2 Cut-in and cut-out levels
 8.7.3 Alarm levels
8.8 EQUIPMENT AND DEVICES
 8.8.1 General
 8.8.2 Flow measurement
 8.8.3 Flowmeter cabling
 8.8.4 Suction safety switch
8.8.5 Level sensors
8.8.6 Float-switch
8.8.7 Site access monitoring
8.8.8 Protection devices
 8.8.8.1 Fuse and fuse-links
 8.8.8.2 Moulded-case circuit-breakers
 8.8.8.3 Miniature circuit-breakers
 8.8.8.4 Residual current devices
 8.8.8.5 Thermal-overload relays
 8.8.8.6 Electronic motor protection relays
 8.8.8.7 Thermistor and RTD motor protection devices
8.8.9 Switching devices
 8.8.9.1 Switches
 8.8.9.2 Selector switches
8.8.10 Contactors
8.8.11 Push-buttons
8.8.12 Emergency stop-buttons
8.8.13 Time-switches
8.8.14 Control devices
 8.8.14.1 Control relays
 8.8.14.2 Time-delay relays and timers
8.8.15 ELV control transformers
8.8.16 Current transformers
8.9 INSTRUMENTATION (DISPLAYS)
8.10 WIRE NUMBERING CONVENTION
8.11 SYSTEMS INCORPORATING PROGRAMMABLE CONTROLLER / TELEMETRY RTU
 8.11.1 Digital inputs and outputs
 8.11.2 Analog inputs and outputs
 8.11.3 Address codes for communication link devices
8.12 SYSTEMS INCORPORATING RELAY CONTROL
 8.12.1 General
 8.12.2 Loop tag definition guidelines

9 PUMPING STATION PIPEWORK
9.1 PUMP DISCHARGE PIPEWORK
 9.1.1 General
 9.1.2 Sizing
 9.1.3 Type
9.2 VALVE APPLICATIONS
 9.2.1 Stop valves
 9.2.2 Non-return valves
 9.2.3 Scour
 9.2.4 Sewage air-release valves
9.3 VALVE CHAMBER
 9.3.1 General
 9.3.2 Design
 9.3.3 Dismantling joints
 9.3.4 Pipework support
 9.3.5 Pressure main tappings
 9.3.6 Access covers
9.4 EMERGENCY BYPASS ARRANGEMENT
 9.4.1 Condition monitoring and maintenance

10 PRESSURE MAIN
10.1 DESIGN
 10.1.1 General
10.2 LOCATION OF PRESSURE MAINS
 10.2.1 General
 10.2.2 Road reserves
 10.2.3 Railway reserves
 10.2.4 Alignment
 10.2.5 Changes in direction
 10.2.6 Easements

10.3 HYDRAULIC DESIGN
 10.3.1 Total mean head
 10.3.2 Mean static head
 10.3.3 Friction head loss in pumping station and pressure main
 10.3.4 Head loss in fittings and valves
 10.3.5 Velocity in pressure mains
 10.3.6 Sizing of pressure mains

10.4 DESIGN PRESSURES
 10.4.1 General
 10.4.2 Maximum design pressure
 10.4.3 Surge
 10.4.4 Maximum design pressure range

10.5 SELECTION OF PIPE AND FITTINGS PRESSURE CLASS
 10.5.1 General
 10.5.2 Maximum allowable operating pressure
 10.5.3 Maximum cyclic pressure range - Thermoplastics pipes and fittings
 10.5.4 Minimum pressure class
 10.5.5 Other considerations

10.6 PLASTICS PIPES
 10.6.1 Temperature de-rating of plastic pipes and fittings
 10.6.2 Fatigue design for thermoplastics pipes
 10.6.3 Fatigue design for thermoplastic fittings
 10.6.4 Fatigue design for thermosetting pipes and fittings
 10.6.5 Combined effects of fatigue and temperature

10.7 METALLIC PIPES AND FITTINGS

10.8 PIPELINE MATERIALS

10.9 PRESSURE MAIN VALVES AND SCOURS
 10.9.1 General
 10.9.2 Stop valves
 10.9.3 Gas release valves
 10.9.4 Non-return valves
 10.9.5 Scours

10.10 ODOUR AND SEPTICITY CONTROL

10.11 RECEIVING SYSTEM
 10.11.1 General
 10.11.2 Discharge MHs

11 STRUCTURAL DESIGN
 11.1 DIFFICULT GROUND CONDITIONS
 11.1.1 Foundation design and ground water control
 11.1.2 Geotechnical assessment
 11.2 STRUCTURES
 11.2.1 Design loads and forces
 11.2.2 Concrete structures
 11.2.2.1 General
 11.2.2.2 Concrete strength
 11.2.2.3 Minimum cover
 11.2.2.4 Crack control requirement for serviceability
11.2.2.5 Areas to be designed as liquid retaining surfaces
11.2.3 Steel structures
11.2.4 Foundations
11.2.5 Pumping station walls
11.2.6 Base slab
11.2.7 Top slab
11.2.8 Emergency storage structures

11.3 PRESSURE MAINS
11.3.1 General
11.3.2 Products and materials
11.3.3 Structural computations
11.3.4 External forces
 11.3.4.1 General
 11.3.4.2 Pipe cover
 11.3.4.3 Trench design
 11.3.4.4 Pipe embedment
11.3.5 Specific geotechnical considerations
 11.3.5.1 Pressure mains in engineered and/or controlled fill
 11.3.5.2 Pressure mains in non-engineered fill
 11.3.5.3 Filling along route of pressure main
 11.3.5.4 Mine subsidence
 11.3.5.5 Slip areas
 11.3.5.6 Water-charged ground
11.3.6 Above ground crossings
11.3.7 Bulkheads and trenchstops
11.3.8 Trenchless technology
11.3.9 Pressure main anchorage
 11.3.9.1 General
 11.3.9.2 Thrust blocks
 11.3.9.3 Anchor blocks
11.3.10 Restraint requirements for special situations
 11.3.11.1 Above ground pressure mains with unrestrained flexible joints
 11.3.11.2 Steel mains with welded joints, buried
 11.3.11.3 Steel mains with welded joints, above ground
 11.3.11.4 Ductile iron or steel mains with flanged joints

12 SUPPORTING SYSTEMS
12.1 SERVICES
 12.1.1 General
 12.1.2 Water
 12.1.3 Telephone/Telemetry lines
 12.1.4 General lighting and power
 12.1.5 Drainage
 12.1.6 Water closet
12.2 MATERIALS HANDLING
 12.2.1 Lifting equipment
 12.2.2 Handling and storage of hazardous material
12.3 SECURITY
12.4 FIRE CONTROL

13 HEALTH AND SAFETY
13.1 GENERAL
13.2 HAZARDS
13.3 HEALTH AND SAFETY
 13.3.1 General
13.3.2 Working at heights
13.4 CONFINED SPACES

14 DESIGN REVIEW

15 DESIGN DOCUMENTATION AND DRAWINGS
15.1 DOCUMENTATION
15.2 DESIGN DRAWINGS
 15.2.1 General
 15.2.2 Real property information
 15.2.3 Pumping station and emergency storage
 15.2.4 Structures
 15.2.5 Pressure mains and sewers
 15.2.6 Longitudinal sections (profiles)
 15.2.7 Title block notation and standard notes
 15.2.8 Other
 15.2.9 Electrical and telemetry
15.3 DRAFTING STANDARDS
 15.3.1 General
 15.3.2 Scale
 15.3.3 Recording of as-constructed information

APPENDIX A TYPICAL PRECOMMISSIONING CHECKLIST

APPENDIX B TYPICAL COMMISSIONING SCHEDULE

APPENDIX C AC VOLTAGE MITIGATION OF STEEL PIPELINES
 C1 INTRODUCTION
 C2 INDUCTIVE COUPLING HAZARD
 C3 CONDUCTIVE COUPLING HAZARD
 C4 CAPACITIVE COUPLING HAZARD
 C5 MITIGATION

APPENDIX D pressure main calculator
 D1 PRESSURE MAIN CALCULATOR
 D2 NOMENCLATURE
 D3 PRINCIPLES AND CRITERIA
 D3.1 Design flows
 D3.2 Detention time
 D3.3 Minimum internal diameter of pressure main
 D3.4 Maximum internal diameter of pressure main
 D3.5 Minimum pumping rate
 D3.6 Maximum pumping rate
 D3.7 Pump control volume (cut-in / cut-out volume) and pump starts
 D4 INSTRUCTIONS
 D4.1 Data entry
 D4.2 Internal diameter of pressure main
 D4.3 Pumping rate and detention time
 D4.4 Wet-well control volume / actual starts / detention time
 D4.5 Printing
 D4.6 New calculation
 D4.7 Reset

SW D5 DESIGN OPTIMISATION
APPENDIX E DETAILED DESIGN CHECKLIST

APPENDIX SW 1 STANDARD PUMP PEDESTAL

SW1.1 GENERAL
SW1.2 PURPOSE
SW1.3 DESIGN
SW1.4 STANDARD DIMENSIONS

TABLES

TABLE 1.1 TYPICAL ASSET DESIGN LIFE
TABLE 3.1 CLEARANCES BETWEEN PRESSURE MAINS AND UNDERGROUND SERVICES
TABLE 5.1 NOT USED
TABLE 8.1 NOT USED
TABLE 8.2 NOT USED
TABLE 8.3 NOT USED
TABLE SW 9.1 NUMBER, SIZE AND TYPE OF CONNECTION
TABLE 10.1 PRESSURE DE-RATING FACTORS FOR PLASTIC PIPES AT ELEVATED TEMPERATURES
TABLE 10.2 FATIGUE DE-RATING FACTORS FOR THERMOPLASTIC PIPES
TABLE 10.3 SCOUR SIZES
TABLE 11.1 REQUIREMENT FOR BULKHEADS

FIGURES

FIGURE 1 SYSTEM DISAGGREGATION DIAGRAM
FIGURE 1.1 CONCEPT DESIGN FLOWCHART
FIGURE 2.1 SPS OVERFLOW RISK REDUCTION DECISION DIAGRAM
FIGURE 2.2 TYPICAL PRE-COMMISSIONING AND COMMISSIONING PROCESS
FIGURE 2.3 TYPICAL HANDOVER TO WATER AGENCY
FIGURE 3.1 DEFLECTION AT JOINTS
FIGURE 3.2 DEFLECTION USING SOC-SOC BENDS
FIGURE 3.3 DEFLECTION USING SOC-SOC CONNECTORS
FIGURE SW 5.1 TYPICAL EMERGENCY STORAGE – CONFIGURATION 1
FIGURE SW 5.2 TYPICAL EMERGENCY STORAGE – CONFIGURATION 2
FIGURE SW 5.3 TYPICAL EMERGENCY STORAGE – CONFIGURATION 3
FIGURE SW 5.4 TYPICAL EMERGENCY STORAGE – CONFIGURATION 4
FIGURE 8.1 NOT USED
FIGURE 10.1 TYPICAL SURGE WAVE
FIGURE 10.2 TYPICAL FATIGUE CYCLE
CONTENTS

16 PRODUCTS AND MATERIALS OVERVIEW
16.1 PURPOSE
16.2 SCOPE
16.3 RESPONSIBILITIES
 16.3.1 Water Agency
 16.3.2 Designer
 16.3.3 Constructor
 16.3.4 Purchaser
16.4 PRODUCT AND MATERIAL STANDARDS AND SPECIFICATIONS
 16.4.1 Product standards
 16.4.2 Product Specifications
 16.4.3 Product Specifications—Alternatives
16.5 QUALITY ASSURANCE
 16.5.1 Default requirement
 16.5.2 Additional information on quality assurance
 16.5.3 Innovative products and materials
16.6 SELECTION GUIDE FOR PIPELINE SYSTEMS
16.7 ADDITIONAL PRODUCT AND MATERIAL INFORMATION

APPENDIX F
F1 GENERAL
F2 QUALITY ASSURANCE OPTIONS
 F2.1 ISO 9000 quality management system certification
 F2.2 Product certification
 F2.2.1 General
 F2.2.2 Product certification — Type 1
 F2.2.3 Product certification — Type 3
 F2.2.4 Product certification — Type 5
 F2.3 Supplier’s declaration of conformance
 F2.4 Second party verification
F3 FACTORS INFLUENCING SELECTION OF QUALITY ASSURANCE OPTIONS
 F3.1 General factors
 F3.2 Likelihood of manufacturing non-conformance
 F3.3 Likelihood of failure of pipeline system from a product non-conformance
 F3.4 Consequences of failure
 F3.5 Product specification
 F3.6 Project magnitude / management
 F3.7 Innovative products
F4 SELECTING THE QUALITY ASSURANCE OPTION
 F4.1 General factors
 F4.2 Product certification
 F4.2.1 General
 F4.2.2 Type 1
 F4.2.3 Type 3
 F4.2.4 Type 5
 F4.3 ISO 9000 quality management system certification
 F4.4 Supplier’s declaration of conformance
 F4.5 Second party verification
TABLES

TABLE 16.1 PRINCIPAL PRESSURE MAINS AND COMPONENTS
TABLE 16.2 PRECAUTIONS, LIMITATIONS, ADVANTAGES AND DISADVANTAGES
Sewage Pumping Station
Code of Australia

WSA 04—2005-2.1

Sydney Water Edition
2012

Part 3: Construction
CONTENTS

17 GENERAL
 17.1 SCOPE
 17.2 INTERPRETATION

18 QUALITY
 18.1 QUALITY ASSURANCE
 18.1.1 General
 18.1.2 Quality management system
 18.1.3 Quality system
 18.1.4 Project management plan
 18.1.5 Inspection and test plans
 18.1.6 Quality tests
 18.1.7 Quality audits
 18.1.8 Traceability
 18.1.9 Quality records
 18.1.10 Inspection
 18.2 PERSONNEL QUALIFICATIONS

19 GENERAL CONSTRUCTION
 19.1 GENERAL
 19.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 19.2.1 Pumping stations
 19.2.2 Inlet works, emergency storage and ERS
 19.2.3 Pressure mains
 19.3 CONTRACT INTERFACES
 19.4 CUSTOMER FOCUS
 19.4.1 General
 19.4.2 Resolution of complaints
 19.5 PROTECTION OF PEOPLE, PROPERTY AND ENVIRONMENT
 19.5.1 Safety of people
 19.5.2 Protection of other services
 19.5.3 Disused / Redundant sewers and pressure mains
 19.5.4 Road reserves or other thoroughfares
 19.5.4.1 Treatment of pavements and other surfaces
 19.5.4.2 Traffic management
 19.5.4.3 Cleanliness of roads, paths, accesses and drainage paths
 19.5.4.4 Storage of products, materials and equipment
 19.5.4.5 Obstruction of street drainage
 19.5.5 Private and public properties
 19.5.6 Protection of the environment and heritage areas
 19.5.6.1 General
 19.5.6.2 Collection and disposal of wastes
 19.5.6.3 Protection of adjacent lands and vegetation
 19.5.6.4 Control of water pollution
 19.5.6.5 Acid sulphate and contaminated soils
 19.5.6.6 Control of noise and atmospheric pollution
 SW 19.5.6.7 Equipment and machinery used in bush fire prone areas
 SW 19.5.6.8 Recycled, reused and waste materials
 19.6 AFFECTED PARTY NOTIFICATIONS
 19.7 ALTERATION OF EXISTING SERVICES
 19.8 SURVEY MARKS
 19.9 CONSTRUCTION TOLERANCES
 19.10 LATENT CONDITIONS

20 PRODUCTS, MATERIALS AND EQUIPMENT
 20.1 AUTHORISED PRODUCTS AND MATERIALS
 20.2 REJECTED PRODUCTS AND MATERIALS
20.3 ELECTRICAL EQUIPMENT
20.4 PUMPS
20.5 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
20.6 DELIVERY AND STORAGE OF ELECTRICAL EQUIPMENT
20.7 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
20.8 FASTENERS
20.9 WORKS INSPECTION AND TESTING
 20.9.1 Switchboards
 20.9.2 Pumps
 20.9.3 Motors
20.10 CONCRETE WORKS
 20.10.1 Delivery
 20.10.2 Transportation of concrete
 20.10.3 Formwork
 20.10.4 Reinforcement
 20.10.5 Placement
 20.10.5.1 General
 20.10.5.2 Placement in water
 20.10.6 Slump
 20.10.7 Compaction
 20.10.8 Stripping
 20.10.9 Curing
 20.10.10 Repair of blemishes
20.11 SUPPLY OF WATER TO THE WORKS
20.12 ON-SITE STOCKPILES

21 ELECTRICAL WORKS
21.1 COMPLIANCE WITH AUTHORITIES, STATUTES, REGULATIONS AND STANDARDS
21.2 SCOPE OF WORK
21.3 SUPPLY AUTHORITY REQUIREMENTS AND METERING
21.4 CONSUMER MAINS
 21.4.1 Point of supply
 21.4.2 Cable size
 21.4.3 Maximum demand
 21.4.4 Calculations to be submitted
 21.4.5 Mains in reserves
 21.4.6 Mains requirements
 21.4.7 Lead-in pole and overhead mains construction
 21.4.7.1 Lead-in pole
 21.4.7.2 Poles
 21.4.7.3 Installation of poles
 21.4.7.4 Aerial cables
 21.4.8 Underground cable installation
 21.4.8.1 General
 21.4.8.2 Location
 21.4.8.3 Excavation and bedding
 21.4.8.4 Underground cable marking
 21.4.8.5 Cable installation on poles
 21.4.8.6 Road crossings
21.5 EARTHING
 21.5.1 General
 21.5.2 Earth circuits
 21.5.3 Labelling
21.6 SWITCHBOARD INSTALLATION
 21.6.1 General
 21.6.2 Equipment mounting
 21.6.3 Thermal derating of equipment
 21.6.4 Labelling
21.6.4.1 General
21.6.4.2 Incoming mains and pump and motor detail labels
21.6.4.3 Main labels
21.6.4.4 Cubicle labels
21.6.4.5 Danger notices
21.6.4.6 Asset and equipment number labels
21.7 CIRCUITS
21.7.1 Main circuits
21.7.2 Control circuit wiring
21.8 CABLEING
21.8.1 General
21.8.2 Conduits
21.8.3 Cable protection
21.8.4 Cable trays
21.8.5 Junction boxes
21.9 INSTALLATION OF PUMP CABLES
21.9.1 Numbering of pumps
21.9.2 Installation
21.10 INSTALLATION OF LEVEL SENSORS
21.10.1 General
21.10.2 Wet-well level sensor probes
21.11 TERMINATIONS
21.11.1 General
21.11.2 Glands
21.11.3 Mains and pump terminations
21.12 PAINTING
21.12.1 General
21.12.2 Paint materials
21.12.3 Surface preparation
21.12.4 Painting and finish
21.13 INSTALLATION IN VALVE PITS
21.13.1 General
21.13.2 Cables
21.14 NOTIFICATION OF ELECTRICAL WORK
22 TELEMETRY SYSTEM
22.1 COMPLIANCE WITH AUTHORITIES, STATUTES, REGULATIONS AND STANDARDS
22.2 SCOPE OF WORK
22.3 HARDWARE INSTALLATION
22.4 PLC PROGRAMMING
22.5 SCADA DATABASE CONFIGURATION
23 ODOUR CONTROL SYSTEM
24 MECHANICAL INSTALLATION OF PUMPS, VALVES AND FITTINGS
24.1 GENERAL
24.2 FLANGED JOINTS
24.3 INSTALLATION OF PUMPING UNITS
24.3.1 General
24.3.2 Machinery alignment
24.3.3 Unit numbers
24.3.4 Test tapping points
24.4 GAUGES AND RECORDERS
24.4.1 Pressure gauges
24.4.2 Pressure recorder
25 METALWORK
25.1 STEELWORK
25.2 ALUMINIUM ALLOY COMPONENTS
25.3 STAINLESS STEEL COMPONENTS
25.4 FASTENERS

26 ACCESS ROAD AND HARDSTAND AREAS
 26.1 GENERAL
 26.2 SUBGRADE
 26.3 BASECOURSE
 26.4 SPRAYED BITUMINOUS SEALING
 26.5 ASPHALTIC CONCRETE
 26.6 TIMBER GUARDRAIL
 SW 26.7 REINFORCED CONCRETE

27 RETAINING WALLS
 27.1 RETAINING WALLS - TIMBER CANTILEVER
 27.1.1 General
 27.1.2 Handrails
 27.2 RETAINING WALLS - CONCRETE - CRIB WALL
 27.2.1 General
 27.2.2 Foundations
 27.2.3 Cribfill and backfill
 27.2.4 Drainage
 27.2.5 Handrails
 SW 27.3 RETAINING WALLS – CONCRETE – CAST IN-SITU
 SW 27.4 RETAINING WALLS – CONCRETE – BLOCK-WORK

28 EXCAVATION
 28.1 SAFETY
 28.2 LIMITS OF EXCAVATION
 28.3 EXCAVATION ACROSS IMPROVED SURFACES
 28.4 EXCAVATION IN ROOT ZONES
 28.5 BLASTING
 28.6 SUPPORT OF EXCAVATIONS
 28.7 DRAINAGE AND DEWATERING
 28.8 FOUNDATIONS AND FOUNDATION STABILISATION
 28.9 SURPLUS EXCAVATED MATERIAL

29 BEDDING FOR PIPES, BENDS, WET-WELLS AND MAINTENANCE STRUCTURES
 29.1 TRENCH FLOOR PREPARATION
 29.2 BEDDING MATERIALS
 29.3 PLACEMENT OF BEDDING
 29.4 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS
 29.5 BEDDING FOR PIPES, VALVES AND FITTINGS
 29.6 BEDDING FOR CONCRETE STRUCTURES
 29.7 BEDDING FOR MAINTENANCE SHAFTS AND VARIABLE BENDS

30 PIPE LAYING AND JOINTING
 30.1 INSTALLATION OF PIPES
 30.1.1 General
 30.1.2 Cleaning, inspection and joint preparation
 30.1.3 Polyethylene
 30.1.4 Laying
 30.2 HORIZONTAL AND VERTICAL DEFLECTION OF GRAVITY SEWERS AND PRESSURE MAINS
 30.2.1 General
 30.2.2 Methods of deflection
 30.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
 30.4 FLOTATION CONTROL
 30.5 THRUST AND ANCHOR BLOCKS AND RESTRAINED JOINTS FOR PRESSURE MAINS
 30.6 MARKING TAPES
 30.6.1 Non-detectable marking tape
 30.6.2 Detectable marking tape
 30.7 VALVES AND SURFACE FITTINGS
30.7.1 Installation
30.7.2 Scours for pressure mains
30.8 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
30.9 BRIDGE CROSSINGS
30.10 TRENCH STOPS FOR PRESSURE MAINS
30.11 BULKHEADS FOR PRESSURE MAINS
30.12 CORROSION PROTECTION OF CAST IRON FOR PRESSURE MAINS
30.13 AQUEDUCTS
30.14 LOCATION MARKERS
30.15 FLANGED JOINTS
30.16 WELDING OF STEEL PRESSURE MAINS
 30.16.1 General
 30.16.2 Field welding of flanges

31 WET-WELLS AND MAINTENANCE HOLES (MHS)
 31.1 GENERAL
 31.2 WET-WELL AND MH BASES
 31.3 TRENCH DRAINAGE AROUND WET-WELLS AND MHS
 31.4 PRECAST CONCRETE SYSTEMS
 31.5 CAST IN-SITU CONCRETE WET-WELLS AND MHS
 31.6 BENCHING AND CHANNELS
 31.7 INTERNAL COATING OF CONCRETE WET-WELLS AND MHS
 31.8 COVERS
 31.9 CONNECTIONS TO WET-WELLS AND MHS
 31.10 MH DROPS

32 PIPE EMBEDMENT AND SUPPORT
 32.1 GENERAL
 32.2 EMBEDMENT MATERIALS
 32.3 COMPACTION OF EMBEDMENT
 32.3.1 General
 32.3.2 Methods
 32.3.3 Compaction trials/Pre-qualification of embedment compaction method
 32.3.3.1 General
 32.3.3.2 Test method
 32.3.3.3 Interpretation and applicability
 32.3.4 Compaction control
 32.4 SPECIAL BEDDING AND EMBEDMENTS/GEOTEXTILE SURROUND AND PILLOW
 32.5 REMOVAL OF TRENCH SUPPORTS
 32.6 CONCRETE EMBEDMENT AND ENCASEMENT

33 FILL
 33.1 TRENCH FILL
 33.2 GENERAL
 33.3 MATERIAL REQUIREMENTS
 33.4 COMPACTION OF TRENCH FILL
 33.5 EMBANKMENT FILL
 33.6 DRIVES AND TUNNEL FILL

34 CONNECTION TO EXISTING GRAVITY SEWERS

35 RESTORATION
 35.1 GENERAL
 35.2 PAVEMENTS
 35.3 LAWNS
 35.4 GRASSED AREAS
 35.5 BUSHLAND
 35.6 PROVISION FOR SETTLEMENT
 35.7 MAINTENANCE OF RESTORED SURFACES

36 ACCEPTANCE TESTING
36.1 PIPELINES
36.2 VISUAL EXTERNAL INSPECTION
36.3 COMPACTION TESTING
 36.3.1 General
 36.3.2 Minimum compaction
 36.3.3 Embedment compaction testing
 36.3.3.1 Applicable pipe sizes
 36.3.3.2 Frequency and location of embedment tests
 36.3.3.3 Retesting
 36.3.4 Trench fill compaction testing
 36.3.4.1 Trafficable test zone
 36.3.4.2 Non-trafficable test zone
 36.3.4.3 Test method
 36.3.4.4 Frequency and location of tests
 36.3.4.5 Retesting
 36.3.5 Other fill compaction testing
 36.3.5.1 General
 36.3.5.2 Trafficable test zone
 36.3.5.3 Non-trafficable test zone
 36.3.5.4 Frequency and location of tests
 36.3.5.5 Retesting
36.4 AIR PRESSURE AND VACUUM TESTING OF GRAVITY SEWERS
 36.4.1 General
 36.4.2 Air testing methods for sewers
 36.4.2.1 Vacuum testing
 36.4.2.2 Low pressure air testing
 36.4.3 Testing of concrete emergency storage and maintenance structures
 36.4.3.1 General
 36.4.3.2 Test method
36.5 HYDROSTATIC PRESSURE TESTING OF PRESSURE MAINS
 36.5.1 General
 36.5.2 System test pressure
 36.5.3 Maximum allowable loss
 36.5.4 Test procedure
 36.5.5 Satisfactory pressure test
 36.5.6 Failure of test
36.6 INFILTRATION TESTING
36.7 DEFLECTION (OVALITY) TESTING OF FLEXIBLE GRAVITY SEWERS
 36.7.1 General
 36.7.2 Ovality proving tools
 36.7.3 Flexible sewers ≤DN 300
36.8 CCTV INSPECTION
36.9 ELECTRICAL WORKS
37 COMMISSIONING
 37.1 GENERAL
 37.2 PUMPING STATION
 37.2.1 Requirements
 37.2.2 Pre-commissioning
 37.2.3 Commissioning
 37.2.4 Handover
 37.3 ODOUR CONTROL SYSTEM
SW 37.4 COMMISSIONING REPORT
38 TOLERANCES ON AS-CONSTRUCTED WORK
 38.1 HORIZONTAL TOLERANCES
 38.1.1 Sewers, mains, valves, in-line structures, pumping stations, roads
 38.2 VERTICAL TOLERANCES
 38.2.1 Sewers, pressure mains, structures, pumping stations, roads
38.2.2 Grade
38.3 VERTICALITY ("PLUMB")
38.4 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
38.5 CAST IN-SITU CONCRETE STRUCTURES AND SLABS

39 WORK AS-CONSTRUCTED DETAILS
39.1 GENERAL
39.2 ELECTRICAL WORKS
 39.2.1 Electrical Contractors Installation Drawings
 39.2.2 Principal Supplied Installation Drawings and Equipment Schedules

APPENDIX G OVALITY TESTING OF PVC AND GRP GRAVITY SEWERS DEFAULT PROVER DIAMETERS
 G1 GENERAL
 G2 DEFAULT PROVER DIAMETERS

TABLES
TABLE 21.1 CONTROL CIRCUIT WIRING INSULATION COLOUR CODING
TABLE 26.1 TIMBER GUARDRAIL DEFAULT CONSTRUCTION DIMENSIONS
TABLE 27.1 RETAINING WALL DEFAULT CONSTRUCTION DIMENSIONS
TABLE 27.2 TIMBER HANDRAIL DEFAULT CONSTRUCTION DIMENSIONS
TABLE 30.1 METHODS OF ACHIEVING CURVED PIPELINES
TABLE 32.1 MAXIMUM PARTICLE SIZE
TABLE 36.1 ORDER OF ACCEPTANCE TESTING OF CIVIL ITEMS
TABLE 36.2 MINIMUM COMPACTION OF EMBEDMENT AND TRENCH / EMBANKMENT / OTHER FILLS
TABLE 36.3 PRESSURE AND VACUUM AIR TESTING ACCEPTANCE TIMES FOR 7 KPA PRESSURE CHANGE
TABLE 36.4 CONCRETE MH TESTING FREQUENCY
TABLE 36.5 MINIMUM TEST TIMES FOR CONCRETE STRUCTURES
TABLE 38.1 SEWER GRADE TOLERANCES
TABLE G1 PROVER OUTSIDE DIAMETER FOR PVC AND GRP PIPES
TABLE G2 MAXIMUM ALLOWABLE SHORT-TERM PIPE DEFLECTIONS
Sewage Pumping Station
Code of Australia

WSA 04—2005-2.1

Sydney Water Edition
2012

Part 4: Standard Drawings
CONTENTS

40 INTRODUCTION
40.1 GENERAL
40.2 DRAWING COMMENTARY AND USING STANDARD DRAWINGS AND OTHER DRAWINGS IN CONJUNCTION WITH THE CODE

41 LISTING OF STANDARD DRAWINGS
LISTING OF STANDARD DRAWINGS

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANNING AND CONCEPT DESIGN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1100</td>
<td>Concept Plan</td>
<td>Typical Catchment Plan</td>
</tr>
<tr>
<td>SPS–1101</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1102</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1103</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1104-V</td>
<td>Pressure Main Concept Design</td>
<td>Sections and Static Head Calculation</td>
</tr>
<tr>
<td>SPS–1105-S</td>
<td>Pumping Station Concept Design</td>
<td>Typical Hydraulic Profile</td>
</tr>
<tr>
<td>PUMPING STATION LAYOUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1200</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1201</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1202</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1203</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1204</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1205</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1206-S</td>
<td>Typical Site Plan – Sydney Water</td>
<td>Conceptual Site Layout</td>
</tr>
<tr>
<td>SPS–1207-S</td>
<td>Typical Site Plan – Sydney Water</td>
<td>Site Access Arrangements</td>
</tr>
<tr>
<td>PUMPING STATION ARRANGEMENT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS–1300</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1301</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1302</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1303</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1304</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1305</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1306</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1307</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1308-V</td>
<td>Water Supply</td>
<td>DN 50 Reduced Pressure Zone Device – Arrangement & Details</td>
</tr>
<tr>
<td>SPS–1309</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1310</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SPS–1350-S</td>
<td>Wet-Well, Valve Chamber & Inlet Maintenance Hole</td>
<td>General Arrangement Plan</td>
</tr>
<tr>
<td>SPS–1351-S</td>
<td>Wet-Well, Valve Chamber & Inlet Maintenance Hole</td>
<td>General Arrangement Section</td>
</tr>
<tr>
<td>SPS–1352-S</td>
<td>Valve Chamber</td>
<td>General Arrangement</td>
</tr>
<tr>
<td>SPS–1353-S</td>
<td>Valve Chamber Covers</td>
<td>Typical Arrangement</td>
</tr>
<tr>
<td>SPS–1354-S</td>
<td>Valve Chamber Covers</td>
<td>Support Beam Details</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>SPS–1355-S</td>
<td>Valve Chamber Covers</td>
<td>Cover & Hinge Details</td>
</tr>
<tr>
<td>SPS–1356-S</td>
<td>Valve Chamber Covers</td>
<td>Additional Details</td>
</tr>
<tr>
<td>SPS–1357-S</td>
<td>Inlet Maintenance Hole Hinged Access Cover</td>
<td>Typical Arrangement (non-trafficable)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>STRUCTURES</td>
</tr>
<tr>
<td>SPS–1400</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>SPS–1401</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>SPS–1402</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>SPS–1403</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>SPS–1404</td>
<td></td>
<td>Not used</td>
</tr>
<tr>
<td>SPS–1405-V</td>
<td>Discharge MH</td>
<td>Arrangement and Cross Section for Pressure Mains ≤ DN 375</td>
</tr>
<tr>
<td>SPS–1406-S</td>
<td>Emergency Storage Structure</td>
<td>General Arrangement (Trafficable)</td>
</tr>
<tr>
<td>SPS–1407-S</td>
<td>Emergency Storage Structure</td>
<td>Details (Trafficable)</td>
</tr>
<tr>
<td>SPS–1408-S</td>
<td>Emergency Storage Structure</td>
<td>General Arrangement (Non-Trafficable)</td>
</tr>
<tr>
<td>SPS–1409-S</td>
<td>Emergency Storage Structure</td>
<td>Details (Non-Trafficable)</td>
</tr>
<tr>
<td>SPS–1410-S</td>
<td>Inlet MH</td>
<td>Plans ≤6m Depth</td>
</tr>
<tr>
<td>SPS–1411-S</td>
<td>Inlet MH</td>
<td>Section ≤6m Depth</td>
</tr>
<tr>
<td>SPS–1412-S</td>
<td>Emergency Relief System</td>
<td>Wet-Well Inlet Sewers DN 150 to DN 250</td>
</tr>
<tr>
<td>SPS–1413-S</td>
<td>Emergency Relief System</td>
<td>Wet-Well Inlet Sewers DN 300 to DN 450</td>
</tr>
<tr>
<td>SPS–1414-S</td>
<td>Inlet MH (Grit Collection)</td>
<td>General Arrangement</td>
</tr>
<tr>
<td>SPS–1415-S</td>
<td>Emergency Bypass Connection Security Enclosure</td>
<td>General Arrangement</td>
</tr>
<tr>
<td>SPS–1416-S</td>
<td>Emergency Bypass Connection Security Enclosure</td>
<td>Details</td>
</tr>
<tr>
<td>SPS–1417-S</td>
<td>Emergency Bypass Connection With Bunded Area</td>
<td>Arrangement and Details</td>
</tr>
<tr>
<td>SEW–1300-V</td>
<td>Maintenance Holes</td>
<td>Sewers ≤ DN 300 Precast Types P1 & P2</td>
</tr>
<tr>
<td>SEW–1301-V</td>
<td>Maintenance Holes</td>
<td>Sewers ≤ DN 300 Cast In situ Types C1 & C2</td>
</tr>
<tr>
<td>SEW–1302-V</td>
<td>Maintenance Holes</td>
<td>Pipe Connection Details</td>
</tr>
<tr>
<td>SEW–1303</td>
<td>Maintenance Holes</td>
<td>Sewers ≤ DN 300 Changes in Level Details</td>
</tr>
<tr>
<td>SEW–1304-V</td>
<td>Maintenance Holes</td>
<td>For Sewers ≤ DN 300 Typical Channel Arrangements</td>
</tr>
<tr>
<td>SEW–1305</td>
<td>Maintenance Holes</td>
<td>Typical Channel Details</td>
</tr>
<tr>
<td>SEW–1306-V</td>
<td>Maintenance Holes</td>
<td>Alternative Drop Connections</td>
</tr>
<tr>
<td>SEW–1307-V</td>
<td>Maintenance Holes</td>
<td>Step Irons & Ladders</td>
</tr>
<tr>
<td>SEW–1308-V</td>
<td>Maintenance Holes</td>
<td>Typical MH Cover Arrangements</td>
</tr>
<tr>
<td>SEW–1309-V</td>
<td>Maintenance Holes</td>
<td>Sewers DN 375 to DN 750</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td>SEW–1311-V</td>
<td>Maintenance Holes</td>
<td>Depth to Invert 6m to 15m</td>
</tr>
<tr>
<td>SEW–1312-V</td>
<td>Maintenance Holes</td>
<td>Depth to Invert >15m</td>
</tr>
<tr>
<td>SEW–1313-V</td>
<td>Maintenance Holes</td>
<td>MH Connection Details PE and Profile Wall PP Pipe</td>
</tr>
<tr>
<td>SEW–1314-V</td>
<td>Maintenance Shafts</td>
<td>Typical Installation</td>
</tr>
<tr>
<td>SEW–1315</td>
<td>Maintenance Shafts</td>
<td>MS & Variable Bend Installations</td>
</tr>
<tr>
<td>SEW–1316-V</td>
<td>Maintenance Shafts</td>
<td>TMS and Connection Installations</td>
</tr>
<tr>
<td>SEW–1317</td>
<td>Maintenance Shafts</td>
<td>Typical MS Cover Arrangements</td>
</tr>
</tbody>
</table>

WET-WELL APPURTENANCES

SPS–1500	Not used	
SPS–1501	Not used	
SPS–1502	Not used	
SPS–1503	Not used	
SPS–1504	Not used	
SPS–1505	Hydraulic Level Sensor	Stilling Tube
SPS–1506	Not used	
SPS–1507	Not used	
SPS–1508-V	Miscellaneous Details	Survey Label Plate, Pump Label Plate, Valve Spindle Access, Signage
SPS–1550-S	Wet-Well Access Hatches	Typical Arrangement Plan & Section
SPS–1551-S	Wet-Well Access Hatches	Typical Arrangement Sections

PRESSURE MAINS

<p>| SPS–1600 | Design | Typical Pressure Main Characteristic Curve |
| SPS–1601-V | Pipe Installation, Support and Trench Fill | Pressure Mains ≤DN 300 |
| SPS–1602-V | Scour Arrangement | Pump and Gravity |
| SPS–1603 | Not used | |
| SPS–1604 | Not used | |
| SPS–1605 | Not used | |
| SPS–1606 | Not used | |
| SPS–1607-S | Gas Release Arrangement | Manual Air Release Arrangement |
| SPS–1608-S | Hydraulic Design | Pipe Absolute Roughness Versus Mean Velocity Chart |</p>
<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBEDMENT / TRENCHFILL AND SUPPORT SYSTEMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEW–1200</td>
<td>Soil Classification Guidelines And</td>
<td>Allowable Bearing Pressures for Bulkheads</td>
</tr>
<tr>
<td>SEW–1201</td>
<td>Embedment and Trenchfill</td>
<td>Typical Arrangements</td>
</tr>
<tr>
<td>SEW–1202</td>
<td>Standard Embedment</td>
<td>Flexible & Rigid Pipes</td>
</tr>
<tr>
<td>SEW–1203</td>
<td>Special Embedment</td>
<td>Inadequate Foundations Requiring Over Excavation & Replacement</td>
</tr>
<tr>
<td>SEW–1204</td>
<td>Special Embedment</td>
<td>Support Utilising Piles</td>
</tr>
<tr>
<td>SEW–1205-V</td>
<td>Special Embedment</td>
<td>Concrete & Stabilised Supports</td>
</tr>
<tr>
<td>SEW–1206</td>
<td>Trench Drainage</td>
<td>Bulkheads & Trenchstop</td>
</tr>
<tr>
<td>SEW–1207-V</td>
<td>Trench Drainage</td>
<td>Typical Systems</td>
</tr>
<tr>
<td>SEW–1208</td>
<td>Verticals & Near Verticals</td>
<td>Exposed & Concealed Methods</td>
</tr>
<tr>
<td>SEW–1250-S</td>
<td>Standard Trench Details</td>
<td>Rigid Pipes (VC & RC)</td>
</tr>
<tr>
<td>SEW–1251-S</td>
<td>Standard Trench Details</td>
<td>Flexible Pipes (GRP, PP & PVC)</td>
</tr>
<tr>
<td>WAT–1200</td>
<td>Soil Classification Guidelines And</td>
<td>Allowable Bearing Pressures for Anchors and Thrust Blocks</td>
</tr>
<tr>
<td>WAT–1201</td>
<td>Embedment & Trenchfill</td>
<td>Typical Arrangement</td>
</tr>
<tr>
<td>WAT–1202-V</td>
<td>Standard Embedment</td>
<td>All Pipe Types</td>
</tr>
<tr>
<td>WAT–1203</td>
<td>Special Embedments</td>
<td>Inadequate and Poor Foundation</td>
</tr>
<tr>
<td>WAT–1204-V</td>
<td>Special Embedments</td>
<td>Concrete, Geotextile and Cement Stabilised Systems</td>
</tr>
<tr>
<td>WAT–1205</td>
<td>Thrust Block Details</td>
<td>Concrete Blocks</td>
</tr>
<tr>
<td>WAT–1207-V</td>
<td>Thrust and Anchor Blocks</td>
<td>Gate Valves and Vertical Bends</td>
</tr>
<tr>
<td>WAT–1208-V</td>
<td>Restrained Joint System</td>
<td>DN 100 to DN 375 DI Mains</td>
</tr>
<tr>
<td>WAT–1209</td>
<td>Trench Drainage</td>
<td>Bulkheads and Trenchstop</td>
</tr>
<tr>
<td>WAT–1210</td>
<td>Trench Drainage</td>
<td>Typical Systems</td>
</tr>
<tr>
<td>WAT–1211-V</td>
<td>Buried Crossings</td>
<td>Under Obstructions</td>
</tr>
<tr>
<td>WAT–1212-V</td>
<td>Buried Crossings</td>
<td>Major Roadways</td>
</tr>
<tr>
<td>WAT–1213-V</td>
<td>Buried Crossings</td>
<td>Railways</td>
</tr>
<tr>
<td>WAT–1214-V</td>
<td>Buried Crossings</td>
<td>Bored & Jacked Encasing Pipe Details</td>
</tr>
<tr>
<td>WAT–1254-S</td>
<td>Anchorage Details</td>
<td>Stop Valve Installations up to DN 750 DICL Mains</td>
</tr>
<tr>
<td>WAT–1255-S</td>
<td>Buried Crossings</td>
<td>Under Minor Obstructions</td>
</tr>
<tr>
<td>SPECIAL CROSSINGS / STRUCTURES ARRANGEMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEW–1400</td>
<td>Buried Crossings</td>
<td>Syphon Arrangement</td>
</tr>
<tr>
<td>SEW–1401</td>
<td>Buried Crossings</td>
<td>Railways</td>
</tr>
<tr>
<td>SEW–1402</td>
<td>Buried Crossings</td>
<td>Major Roadways</td>
</tr>
<tr>
<td>SEW–1403</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SEW–1406</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>SEW–1407</td>
<td>Not used</td>
<td></td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>SEW–1451-S</td>
<td>Ventilation Systems</td>
<td>Educt Vent Shaft Base Block Details</td>
</tr>
<tr>
<td></td>
<td>INSTALLATION PRACTICES/ STRUCTURES</td>
<td></td>
</tr>
<tr>
<td>WAT–1300</td>
<td>Valve and Hydrant Identification</td>
<td>Identification Markers & Marker Posts</td>
</tr>
<tr>
<td>WAT–1303-V</td>
<td>Typical Surface Fitting Installation</td>
<td>Sluice Valves</td>
</tr>
<tr>
<td>WAT–1304-V</td>
<td>Typical Appurtenance Installation</td>
<td></td>
</tr>
<tr>
<td>WAT–1307-V</td>
<td>Aerial Crossings</td>
<td>Scour Arrangements</td>
</tr>
<tr>
<td>WAT–1310</td>
<td>Aerial Crossings</td>
<td>Aqueduct</td>
</tr>
<tr>
<td>WAT–1311</td>
<td>Aerial Crossings</td>
<td>Aqueduct Protection Grille</td>
</tr>
<tr>
<td>WAT–1312</td>
<td>Aerial Crossings</td>
<td>Bridge Crossing Concepts</td>
</tr>
<tr>
<td>WAT–1313</td>
<td>Flanged Joints</td>
<td>Bolting Details</td>
</tr>
<tr>
<td></td>
<td>FABRICATION DETAILS</td>
<td></td>
</tr>
<tr>
<td>WAT–1400</td>
<td>Typical Steel Pipe Jointing</td>
<td>Butt Welding of Joints</td>
</tr>
<tr>
<td>WAT–1401-V</td>
<td>Typical Steel Pipe Jointing</td>
<td>Rubber Ring Joint Spigot Bands</td>
</tr>
<tr>
<td>WAT–1402</td>
<td>Typical Steel Pipe Jointing</td>
<td>Welded Pipe Collars</td>
</tr>
<tr>
<td>WAT–1403-V</td>
<td>Typical Steel Fabrication</td>
<td>Bends</td>
</tr>
<tr>
<td>WAT–1408-V</td>
<td>Joint Corrosion Protection</td>
<td>Cement Mortar Lined Steel Pipe DN 300 to DN 1200</td>
</tr>
<tr>
<td>WAT–1409</td>
<td>Hydrant Installation Fittings</td>
<td>PE Assemblies</td>
</tr>
</tbody>
</table>