CONTENTS

PREFACE

INTRODUCTION

PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS

I Glossary of Terms
II Abbreviations
III Referenced Documents

PART 1: PLANNING AND DESIGN

Contents
1 General
2 System Planning
3 Hydraulic Design
4 Products and Materials
5 General Design
6 System Pressure Management
7 Structural Design
8 Appurtenances
9 Design Review and Drawings

PART 2: CONSTRUCTION

Contents
10 General
11 General Construction
12 Products and Materials
13 Excavation
14 Bedding for Pipes
15 Pipe Laying, Jointing and Connecting
16 Pipe Embedment and Support
17 Fill
18 Swabbing
19 Acceptance Testing
20 Disinfection
21 Tolerances on As-Constructed Work
22 Connections to Existing Water Mains
23 Restoration
24 Work As Constructed Details

© Water Supply Code of Australia
APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Generic Infrastructure Protection Guidance</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Equivalent Pipe Sizes for Commonly Used Materials</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Under Pressure Cut-In Connection to Pressure Pipes ≥DN 80</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Booster Configurations</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Selection of Pressure Accumulator Tanks</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Water Mains in Slip and Potentially Unstable Areas</td>
</tr>
<tr>
<td>Appendix G</td>
<td>Soil Classification Guidelines and Allowable Bearing Pressures for Anchors and Thrust Blocks</td>
</tr>
<tr>
<td>Appendix H</td>
<td>Hydrant Spacings</td>
</tr>
<tr>
<td>Appendix I</td>
<td>Disinfection of Water Mains</td>
</tr>
<tr>
<td>Appendix J</td>
<td>Safety Assurance Plan and Job Safety Analysis</td>
</tr>
<tr>
<td>Appendix K</td>
<td>Connectivity Inspection of Dual Water Supply Systems</td>
</tr>
</tbody>
</table>
PART 1: PLANNING AND DESIGN

Water Supply Code of Australia
Version 3.1
CONTENTS

1 GENERAL

1.1 SCOPE

1.2 PLANNING AND DESIGN
 1.2.1 Objectives
 1.2.2 Scope and requirements
 1.2.3 Concept plan format
 1.2.4 Critical infrastructure protection
 1.2.4.1 Asset categorisation
 1.2.4.2 All hazards – Infrastructure protection
 1.2.5 Detailed design
 1.2.5.1 Designer’s needs and responsibilities
 1.2.5.2 Requirements to be addressed
 1.2.5.3 Design outputs
 1.2.6 Design life
 1.2.7 Instrumentation and control systems

1.3 CONSULTATION WITH OTHER PARTIES

2 SYSTEM PLANNING

2.1 GENERAL

2.2 SYSTEM PLANNING PROCESS
 2.2.1 General
 2.2.2 Extending / upgrading an existing water supply system
 2.2.3 Providing a new water supply
 2.2.4 Non-drinking water as drinking water substitution

2.3 DEMANDS
 2.3.1 General
 2.3.2 Dual water supply systems
 2.3.2.1 General
 2.3.2.2 Rainwater tanks
 2.3.3 Demand assessment
 2.3.3.1 General
 2.3.3.2 Residential
 2.3.3.3 Non-residential
 2.3.4 Peak demands
 2.3.4.1 General
 2.3.4.2 Peak day demand
 2.3.4.3 Peak hour demand

2.4 SYSTEM CONFIGURATION

2.5 SYSTEM HYDRAULICS
 2.5.1 General
 2.5.2 Network analysis
 2.5.3 Operating pressures
 2.5.3.1 Service pressure
 2.5.3.2 Maximum allowable service pressure
 2.5.3.3 Minimum service pressure
 2.5.3.4 Average service pressure
 2.5.4 Pressure variation analysis
 2.5.5 Determining supply zones
 2.5.5.1 General
 2.5.5.2 Use of minimum allowable or desirable minimum service pressures
 2.5.5.3 Use of desirable minimum static pressure
2.6 WATER QUALITY
 2.6.1 General
 2.6.2 Prevention of back siphonage
 2.6.3 Water age
 2.6.4 Disinfection

2.7 SEPARATION OF DRINKING AND NON-DRINKING WATER SUPPLY SYSTEMS
 2.7.1 Permanent cross links and cross connections
 2.7.2 Temporary cross links

2.8 PUMPING STATIONS
 2.8.1 General
 2.8.2 Design factors
 2.8.2.1 System related factors
 2.8.2.2 Site related factors
 2.8.2.3 Service related factors
 2.8.3 Concept design

2.9 SERVICE RESERVOIRS
 2.9.1 Storage capacity
 2.9.2 Location

2.10 TRENCHLESS TECHNIQUES FOR PIPELAYING

2.11 FUTURE SYSTEM EXPANSION

2.12 SYSTEM REVIEW

3 HYDRAULIC DESIGN

3.1 SIZING
 3.1.1 General
 3.1.2 Minimum pipe sizes
 3.1.3 Empirical sizing of reticulation mains
 3.1.4 Dual water supply systems
 3.1.5 Fire flows
 3.1.6 Sizing by analysis
 3.1.6.1 General
 3.1.6.2 Head losses
 3.1.6.3 Hydraulic roughness values
 3.1.6.4 Flow velocities

3.2 DESIGN PRESSURES
 3.2.1 General
 3.2.2 Gravity systems
 3.2.3 Systems subjected to dynamic pressures

3.3 PRESSURE CLASS OF SYSTEM COMPONENTS
 3.3.1 Gravity systems
 3.3.2 Systems subjected to dynamic pressures

3.4 THRUST AND ANCHOR BLOCK DESIGN

3.5 SYSTEM TEST PRESSURE

3.6 DESIGN FOR DYNAMIC STRESSES
 3.6.1 General
 3.6.2 Surge
 3.6.3 Fatigue
 3.6.4 Fatigue de-rating of plastics pipes and fittings

3.7 TEMPERATURE DE-RATING OF PLASTICS PIPES AND FITTINGS

3.8 PIPELINE COMPONENTS MINIMUM PRESSURE CLASS
4 PRODUCTS AND MATERIALS

4.1 GENERAL

4.2 DIFFERENTIATION OF DRINKING AND NON-DRINKING PIPE SYSTEMS
 4.2.1 Principles
 4.2.2 Water supply mains – drinking water
 4.2.3 Water supply mains – non-drinking water
 4.2.4 Property services – drinking water
 4.2.5 Property services – non-drinking water
 4.2.6 Marking tapes

4.3 DUCTILE IRON PIPELINE SYSTEMS
 4.3.1 Product Specifications
 4.3.2 Sizes and configurations
 4.3.3 Seal coating of lining
 4.3.4 Sleeving
 4.3.5 Screw-on flanges for DI pipes
 4.3.6 Flanged joints

4.4 PVC PIPELINE SYSTEMS

4.5 PE PIPELINE SYSTEMS

4.6 STEEL PIPELINE SYSTEMS
 4.6.1 Product Specifications
 4.6.2 Sizes and configurations
 4.6.3 Joints
 4.6.4 Field welding
 4.6.5 Flanged joints

4.7 GRP PIPELINE SYSTEMS

4.8 PROTECTION AGAINST DEGRADATION
 4.8.1 Application
 4.8.2 Protection against aggressive environments
 4.8.3 Protection against damage to coatings
 4.8.4 Stainless steels
 4.8.4.1 Grade selection
 4.8.4.2 Welding
 4.8.4.3 Threaded components
 4.8.5 Cathodic protection
 4.8.6 Stray current corrosion
 4.8.7 Protection against contaminated ground
 4.8.8 Bolted connections

5 GENERAL DESIGN

5.1 GENERAL REQUIREMENTS
 5.1.1 Design tolerances
 5.1.2 Levels
 5.1.3 Water main renewals—electrical safety and earthing to water services
 5.1.4 Environmental considerations
 5.1.4.1 General
 5.1.4.2 Urban salinity

5.2 RETICULATION DESIGN FOR WATER QUALITY
 5.2.1 Layout of water mains
 5.2.2 Looped mains
 5.2.3 Link mains
 5.2.4 Reduced size mains

5.3 WATER MAIN ACCESS

5.4 LOCATION OF WATER MAINS
5.4.1 General
5.4.2 Water mains in road reserves
 5.4.2.1 General
 5.4.2.2 Location in footway
 5.4.2.3 Location in carriageway
 5.4.2.4 Location in roundabouts and bus bays
5.4.3 Location in other than dedicated public road reserves
5.4.4 Water mains in easements
5.4.5 Dual water supply systems
5.4.6 Effect on vegetation
5.4.7 Water mains near trees
5.4.8 Contaminated sites
5.4.9 Crossings
 5.4.9.1 General
 5.4.9.2 Requirements for encased pipe installations
5.4.10 Railway reserves
5.4.11 Crossings of creeks or drainage reserves
5.4.12 Overhead power lines and transmission towers
5.4.13 Water mains in conjunction with landscaping and/or other development
5.4.14 Water mains on curved alignments
5.4.15 Location markers
5.4.16 Marking tape
 5.4.16.1 General
 5.4.16.2 Mains
 5.4.16.3 Property services

5.5 TRENCHLESS TECHNOLOGY
5.6 SHARED TRENCHING
5.7 DUPLICATE MAINS
5.8 RIDER MAINS
5.9 CONNECTION OF NEW MAINS TO EXISTING MAINS
5.10 TERMINATION POINTS
 5.10.1 Permanent ends of water mains
 5.10.2 Temporary ends of water mains
 5.10.3 Chlorination assemblies
 5.10.4 Flushing points
5.11 PROPERTY SERVICES
 5.11.1 General
 5.11.2 Connections to water mains
 5.11.3 Services, outlets and meters
5.12 OBSTRUCTIONS AND CLEARANCES
 5.12.1 General
 5.12.2 Surface obstructions
 5.12.3 Clearance from transmission towers
 5.12.4 Clearance from structures and property boundaries
 5.12.5 Underground obstructions and services
 5.12.5.1 General
 5.12.5.2 Clearance requirements
 5.12.6 Deviation of water mains
 5.12.6.1 General
 5.12.6.2 Horizontal deviation of water mains
 5.12.6.3 Vertical deviation of water mains
 5.12.6.4 Curving of pipes to avoid obstructions
5.13 DISUSED OR REDUNDANT PIPELINES

© Water Supply Code of Australia
6 SYSTEM PRESSURE MANAGEMENT

6.1 GENERAL

6.2 IN-LINE PRESSURE BOOSTER PUMPING STATIONS

6.2.1 Planning criteria

6.2.2 Concept design
 6.2.2.1 General
 6.2.2.2 Life cycle considerations
 6.2.2.3 Functionality
 6.2.2.4 Due diligence requirements
 6.2.2.5 Reliability
 6.2.2.6 Maintainability
 6.2.2.7 Materials design
 6.2.2.8 Location
 6.2.2.9 Site selection
 6.2.2.10 Noise control
 6.2.2.11 Services
 6.2.2.12 Access
 6.2.2.13 Site drainage
 6.2.2.14 Landscaping
 6.2.2.15 Security
 6.2.2.16 Signage
 6.2.2.17 Supporting systems
 6.2.2.18 Health and safety

6.2.3 Commissioning plan
 6.2.3.1 General
 6.2.3.2 Pre-commissioning
 6.2.3.3 Commissioning

6.2.4 System planning and modelling
 6.2.4.1 Modelling
 6.2.4.2 Minimum pressure affecting the area
 6.2.4.3 Number of affected properties within the low pressure zone

6.2.5 Booster design
 6.2.5.1 General
 6.2.5.2 Connection to the network
 6.2.5.3 Maximum flow and pressure requirements
 6.2.5.4 Design for minimum pressure boost conditions
 6.2.5.5 Design for minimum flow conditions
 6.2.5.6 Booster configuration design
 6.2.5.7 Booster set and pump selection
 6.2.5.8 Booster pipework and manifold design
 6.2.5.9 Booster equipment and devices
 6.2.5.10 Site specific requirements

6.2.6 Booster pipework
 6.2.6.1 General design parameters
 6.2.6.2 Manifolds, off-takes, suction and delivery pipework
 6.2.6.3 Pressure gauges and tappings

6.2.7 Pressure accumulator tank

6.2.8 Power system and supply
 6.2.8.1 General
 6.2.8.2 Security of supply
 6.2.8.3 Primary supply
 6.2.8.4 Duplicate supply
 6.2.8.5 Emergency power
 6.2.8.6 On-site generator
 6.2.8.7 Mobile generator
 6.2.8.8 Power factor correction
 6.2.8.9 Lighting
6.2.9 Control and telemetry system
 6.2.9.1 General
 6.2.9.2 Instrumentation
 6.2.9.3 System requirements
 6.2.9.4 Fire flow operation
6.2.10 Alarms and controls
 6.2.10.1 General
 6.2.10.2 Control switches – manual and emergency operation
6.2.11 Telemetry
 6.2.11.1 General
 6.2.11.2 Software
 6.2.11.3 Communications

6.3 PRESSURE REDUCING VALVE INSTALLATIONS
 6.3.1 Planning criteria
 6.3.2 Design requirements

6.4 PRESSURE SUSTAINING VALVE INSTALLATIONS
 6.4.1 Planning criteria
 6.4.2 Design requirements

7 STRUCTURAL DESIGN

7.1 GENERAL
7.2 STRUCTURAL CONSIDERATIONS
7.3 INTERNAL FORCES
7.4 EXTERNAL FORCES
 7.4.1 General
 7.4.2 Pipe cover
 7.4.3 Embedment zone dimensions
 7.4.4 Pipe embedment
 7.4.5 Buoyancy
7.5 GEOTECHNICAL CONSIDERATIONS
 7.5.1 General
 7.5.2 Water mains in engineered or controlled fill
 7.5.3 Water mains in non-engineered fill
 7.5.4 Construction of an embankment
7.6 CONCRETE ENCASEMENT
 7.6.1 General
 7.6.2 Requirements
 7.6.3 Encased steel pipelines
 7.6.3.1 General
 7.6.3.2 Existing steel pipelines
7.7 WATER MAINS IN UNSTABLE GROUND
 7.7.1 General
 7.7.2 Mine subsidence areas
 7.7.3 Slip areas
7.8 ABOVE-GROUND WATER MAINS
7.9 PIPELINE ANCHORAGE
 7.9.1 General
 7.9.2 Thrust blocks
 7.9.2.1 General
 7.9.2.2 Concrete thrust blocks
 7.9.2.3 Use of puddle flanges to transfer thrust
 7.9.2.4 Timber and recycled plastics thrust blocks
 7.9.3 Anchor blocks

© Water Supply Code of Australia
7.9.4 Thrust and anchor blocks for dual water supply systems
7.9.5 Restraint requirements for special situations
7.9.6 Restraint requirements for special situations
 7.9.6.1 Above-ground mains with unrestrained flexible joints
 7.9.6.2 Buried steel mains with welded joints
 7.9.6.3 Above-ground steel mains with welded joints
 7.9.6.4 Ductile iron and steel mains with flanged joints
 7.9.6.5 PE mains

7.10 BULKHEADS AND TRENCHSTOPS
7.11 UNFORESEEN GROUND CONDITIONS

8 APPURTENANCES

8.1 VALVES—GENERAL
 8.1.1 Valving design
 8.1.2 Valve siting principles
 8.1.3 Selection considerations
 8.1.4 Local in-line booster pumping stations
 8.1.5 Plastics identification covers

8.2 STOP VALVES
 8.2.1 Product Specifications
 8.2.2 Installation design and selection criteria
 8.2.2.1 General
 8.2.2.2 Gate valves
 8.2.2.3 Butterfly valves
 8.2.3 Stop valves for transfer/distribution mains
 8.2.4 Stop valves for reticulation mains
 8.2.5 Stop valves for local in-line booster pumping stations
 8.2.6 Bypass of stop valve
 8.2.7 Stop valves—location and arrangements
 8.2.7.1 General
 8.2.7.2 Arrangement 1
 8.2.7.3 Arrangement 2
 8.2.7.4 Arrangement 3
 8.2.7.5 Arrangement 4
 8.2.7.6 Arrangement 5
 8.2.7.7 Arrangement 6
 8.2.7.8 Arrangement 7
 8.2.8 Stop valve special arrangements
 8.2.9 Rider mains and network configurations
 8.2.10 Crossing mains – interconnection

8.3 CONTROL VALVES
 8.3.1 Product Specifications
 8.3.2 Automatic inlet control valves (AICV)
 8.3.3 Pressure reducing valves (PRV)
 8.3.4 Pressure relief valves (PRelV)
 8.3.5 Pump control valves
 8.3.6 Pressure sustaining valves (PSV)

8.4 AIR VALVES (AV)
 8.4.1 Product Specifications
 8.4.2 Installation design criteria
 8.4.3 Air valves type
 8.4.4 Air valves size
 8.4.5 Air valves location
 8.4.6 Use of hydrants as an alternative to air valves
 8.4.7 Water sampling via air valves
8.5 NON-RETURN VALVES
 8.5.1 Product Specifications
 8.5.2 Installation design criteria
 8.5.3 Non-return valves for local in-line booster pumping stations and boosted zones

8.6 SCOURS AND PUMP-OUT BRANCHES
 8.6.1 Location and arrangements
 8.6.2 Design
 8.6.3 Scour application
 8.6.4 Scour size
 8.6.5 Scour location

8.7 SWABBING POINTS

8.8 HYDRANTS ERROR! BOOKMARK NOT DEFINED.
 8.8.1 Product Specifications
 8.8.2 Purposes
 8.8.3 Hydrant siting principles
 8.8.4 Hydrant types
 8.8.5 Hydrant installation
 8.8.6 Hydrant outlet connections
 8.8.7 Hydrant size
 8.8.8 Hydrant spacing
 8.8.9 Hydrant location
 8.8.10 Hydrants for reticulation system operational requirements
 8.8.11 Hydrants at ends of mains

8.9 DISINFECTION FACILITIES
 8.9.1 General
 8.9.2 Reticulation mains
 8.9.3 Transfer and distribution mains
 8.9.4 Discharge

8.10 SURFACE FITTINGS
 8.10.1 Product Specifications
 8.10.2 General
 8.10.3 Marking of surface fittings
 8.10.4 Installation requirements

8.11 APPURTENANCE LOCATION MARKING
 8.11.1 General
 8.11.2 Marker posts and plates
 8.11.3 Pavement markers
 8.11.4 Kerb markings

9 DESIGN REVIEW AND DRAWINGS

9.1 DESIGN REVIEW

9.2 DESIGN DRAWINGS
 9.2.1 General
 9.2.2 Composition of Design Drawings
 9.2.3 Scale
 9.2.4 Contents of Design Drawings
 9.2.5 Pipeline system acronyms
 9.2.6 Water mains >DN 300

9.3 SPECIFICATIONS

9.4 RECORDING OF WORK AS CONSTRUCTED INFORMATION
TABLES

Table 1.1 Asset Categories
Table 1.2 Typical Asset Design Lives
Table 2.1 Guide to Demand Allocation Within Dual Water Systems
Table 2.2 Typical Peak Hour Demand Work Sheet for Dual Water Supply Systems
Table 2.3 Service Pressure Limits for Drinking Water Single Supply
Table 3.1 Minimum Pipe Sizes for Particular Developments
Table 3.2 Empirical Guide for Pipe Sizing
Table 3.3 Methods for Design of Plastics Pipes and Fittings for Dynamic Stresses
Table 3.4 Temperature De-Rating Factors for Plastics Pipes Operating at Elevated Temperatures
Table 4.1 Colour Differentiation of Drinking Water and Non-Drinking Water Components in Dual Water Reticulation Systems
Table 5.1 Design Requirements for Reduced Sized Drinking Water Mains in Court Bowls, Cul-de-Sacs and Dead-Ends
Table 5.2 Default Easement Guidelines
Table 5.3 Trench Details for Two Parallel Mains/Services
Table 5.4 Residential Property Service Pipe/Connection Sizes
Table 5.5 Clearances Between Water Mains and Underground Services
Table 6.1 Flow Velocities
Table 7.1 PVC Pipe Material Characteristics
Table 7.2 Minimum Depths of Pipe Cover
Table 7.3 Minimum Thrust Area for Concrete Blocks at 1000 kPa System Test Pressure
Table 7.4 Allowable Applications for Timber and Recycled Plastics Thrust Blocks
Table 7.5 Requirements for Bulkheads and Trenchstops
Table 8.1 Colour Coding of Spindle Cap Plastics Covers
Table 8.2 Stop Valve Spacing Criteria
Table 8.3 Maximum Water Main Drainage Times
Table 8.4 Minimum Scour Size

FIGURES

Figure 1.1 Typical Water Supply System
Figure 2.1(a) Single Transfer/Distribution Main, Minor Network and Dead-End Branch Mains
Figure 2.1(b) Single Transfer/Distribution Main, Network With Multiple Distribution Mains and Branch Mains With Reduced Diameter Dead-Ends
Figure 2.1(c) Twin Transfer/Distribution Mains, Network With Multiple Distribution Mains, Looped Mains and Link Mains to Minimise Dead-Ends, Some Reduced Diameter Dead-End Mains and Staging of Provision of Mains
Figure 2.2 Typical Water Supply Pumping Station Arrangements
Figure 4.1 Flange Fastener Tightening Sequence
Figure 4.2 Typical Insulated Flanged Joint for Cathodically Protected Steel Mains
Figure 4.3 Typical Bolted Connection Detail for Fusion Bonded Coated Ductile Iron Flanges With Stainless Steel Fasteners
Figure 4.4 Typical Bolted Connection Detail and Corrosion Protection Procedure for Buried Ductile Iron Flanges With Galvanised Steel Fasteners
Figure 4.5 Typical Bolted Connection Detail for PE Stub Flange and Raised Ductile Iron Flange With Stainless Steel Fasteners and Backing Plate
Figure 5.1 Looped and Link Mains
Figure 5.2 Design Requirements for Reduced Sized Mains in Court Bowls, Cul-de-Sacs and Dead-Ends
Figure 5.3 Typical Dual Water Installation in Common Trench
Figure 5.4 Typical Shared/Combined Trench Installation
Figure 5.5 Typical Shared/Combined Trench Installation Off-take
Figure 5.6 Typical Under Pressure Cut-In Connection Method Using a Split SS Clamp With Flanged Off-take – Plan View
Figure 5.7 Typical Inserted Tee Method Using Mechanical Couplings – Plan View
Figure 5.8 Typical Flushing Assembly Details for Ends of Reduced Sized Mains
Figure 5.9 Typical Split Service Main to Meter Across Road Carriageway
Figure 5.10 Typical Property Service Layouts in Dual Water Supply Networks
Figure 5.11 Typical Duct and Service Marker Details
Figure 5.12 Horizontal Deviation by Deflection at Pipe Joints – Plan View
Figure 5.13 Horizontal Deflection Using a DI SOC-SOC Connector and Permitted Joint Deflections for DI Pipes and Other Applicable Pipe Types – Plan View
Figure 5.14 Deflection Using DI Bends with DI and Other Permitted Pipe Types – Plan View
Figure 5.15 Vertical Deviation by Deflection at Pipe Joints – Section View
Figure 5.16 Vertical Deviation Using DI Bends – Section View
Figure 5.17 Typical Anchor Block Detail for Vertical Bends
Figure 5.18 Vertical Deflections Using Fabricated Pipe and Flanges – Section View
Figure 5.19 Vertical Deflections Using Double Offset Fabricated Pipe and Flanges – Section View
Figure 6.1 Typical Pre-Commissioning and Commissioning Process
Figure 6.2 Typical Handover to Water Agency
Figure 7.1 Typical Arrangement of Buried Pipe
Figure 7.2 Type A Embedment Support
Figure 7.3 Type B Embedment Support
Figure 7.4 Type C and D Embedment Support
Figure 7.5 Type E Embedment Support
Figure 7.6 Type F Embedment Support
Figure 7.7 Type G Embedment Support
Figure 7.8 Type H Embedment Support
Figure 7.9 Type J and K Concrete Encasement Embedment Support
Figure 7.10 Alternative End Treatment for Concrete Encased Steel Pipelines
Figure 7.11 Thrust Block for Tees (for Horizontal Thrust)
Figure 7.12 Thrust Block for Bends (for Horizontal Thrust)
Figure 7.13 Taper Thrust Block (for Horizontal Thrust)
Figure 7.14 Flushing/Washout Bend Thrust Block (for Horizontal Thrust) (Minimum Required Thrust Area as Per Dead-End)
Figure 7.15 Typical Concrete Thrust Block for Flanged Valves
Figure 7.16 Typical Concrete Thrust Block for Socketed Valves
Figure 7.17 Typical Timber and Recycled Plastics Thrust Block Configurations
Figure 7.18 Typical Valve Restraint Mechanism
Figure 7.19 Typical Concrete Thrust Blocks for Adjacent Dual Water Mains
Figure 7.20 Typical Concrete Bulkhead Detail
Figure 7.21 Typical Road Crossing Bulkhead
Figure 7.22 Typical Trench Stop Detail
Figure 7.23 Typical Trench Drainage Detail at Bulkhead
Figure 7.24 Typical Trench Drainage Detail at Low Point in Trench
Figure 7.25 Typical Trench Drainage Detail at Concrete Encased Sections
Figure 7.26 Typical Trench Drainage Discharge
Figure 8.1 Plastics Identification Cover
Figure 8.2 Typical Gate Valve and Hydrant Installation at Standard Depth
Figure 8.3 Typical Gate Valve Installation at Deeper Than Standard Depth
Figure 8.4 Typical Valve Chamber Arrangement for DN 500 and DN 600 Mains – Plan View
Figure 8.5 Typical Valve Chamber Arrangement for a DN 750 Main – Plan View
Figure 8.6 Typical Valve Chamber Arrangement – Cross Section
Figure 8.7 Bypass Arrangement With L-Type Ball Hydrant
Figure 8.8 Branch Valve Adjacent to Main
Figure 8.9 Branch Valve Adjacent to Inner Splay Corner
Figure 8.10 Valve and Hydrant Combinations
Figure 8.11 Valve Adjacent to a Taper
Figure 8.12 Valves in Main Cross-Links
Figure 8.13 Valves in Conjunction With Control Valves
Figure 8.14 Two Direction Supply
Figure 8.15 Off-take Arrangement for Rider Mains
Figure 8.16 Interconnection of DN 200 and DN 225 Crossing Mains
Figure 8.17 Interconnection of Reticulation and Distribution Mains
Figure 8.18 Interconnection of Distribution Mains
Figure 8.19 Interconnection of a Continuing Reticulation Main and Larger Main
Figure 8.20 Typical Pressure Reducing Valve Installation – Sectional Elevation
Figure 8.21 Alternative Above-Ground Installation – PRV on Bypass – Side Elevation
Figure 8.22 PRV on Main Line With Bypass – Plan View
Figure 8.23 Typical Air Valve Orientation
Figure 8.24 Typical Air Valve Installation
Figure 8.25 Scour Detail
Figure 8.26 Scour Discharge to Approved Drainage System
Figure 8.27 Scour Discharge Collection/Pump-Out Sump
Figure 8.28 Scour Discharge to Storage Lagoon
Figure 8.29 Spring Hydrant – Typical Direct Connection
Figure 8.30 Isolating Valve Assembly With Spring Hydrant
Figure 8.31 Typical Hydrant Installation in Non-Trafficable Location
Figure 8.32 Typical Hydrant Installation in Trafficable Asphaltic Concrete Pavement
Figure 8.33 Typical Hydrant With Isolating Valve Installation With Spring Hydrant Option in Non-Trafficable Location
Figure 8.34 Typical Offsetting of Hydrants in Footway
Figure 8.35 Non-Trafficable Stop Valve Surface Box
Figure 8.36 Typical Trafficable Stop Valve Surface Boxes
Figure 8.37 Typical Trafficable Hydrant Surface Boxes
Figure 8.38 Retro-Reflective Pavement Markers
Figure 8.39 Kerb Markings
PART 2: CONSTRUCTION

Water Supply Code of Australia
Version 3.1
CONTENTS

10 GENERAL
 10.1 SCOPE
 10.2 INTERPRETATION

11 GENERAL CONSTRUCTION
 11.1 GENERAL
 11.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 11.3 CONTRACT INTERFACES
 11.4 CUSTOMER FOCUS
 11.4.1 General
 11.4.2 Resolution of complaints
 11.5 PROTECTION OF PROPERTY AND ENVIRONMENT
 11.5.1 Protection of other services
 11.5.2 Disused / Redundant water mains
 11.5.3 Road reserves or other thoroughfares
 11.5.3.1 Road opening permits
 11.5.3.2 Treatment of pavements and other surfaces
 11.5.3.3 Cleanliness of roads, paths, accesses and drainage paths
 11.5.3.4 Storage of products, materials and equipment
 11.5.3.5 Obstruction of street drainage
 11.5.4 Private and public properties
 11.5.5 Protection of the environment and heritage areas
 11.5.5.1 General
 11.5.5.2 Collection and disposal of wastes
 11.5.5.3 Protection of adjacent lands and vegetation
 11.5.5.4 Control of water pollution
 11.5.5.5 Contaminated soils
 11.5.5.6 Fire ant areas
 11.5.5.7 Control of noise and atmospheric pollution
 11.5.5.8 Equipment and machinery use in bush fire prone areas
 11.6 OPERATION OF WATER SUPPLY NETWORK
 11.7 ALTERATION OF EXISTING SERVICES
 11.8 CONNECTION TO AND WORK ON EXISTING ASBESTOS WATER MAINS
 11.9 CUT-IN CONNECTION EQUIPMENT
 11.10 SURVEY MARKS
 11.11 CONSTRUCTION TOLERANCES
 11.12 LATENT CONDITIONS

12 PRODUCTS AND MATERIALS
 12.1 AUTHORISED PRODUCTS AND MATERIALS
 12.1.1 General
 12.2 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
 12.3 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
 12.3.1 General
 12.3.2 Transportation
 12.3.3 Unloading and handling
 12.3.4 On-site storage
 12.4 REJECTED PRODUCTS AND MATERIALS
 12.5 CONCRETE WORKS
 12.6 SUPPLY OF WATER TO THE WORKS
 12.7 SUPPLY OF WATER TO EXISTING PROPERTIES
 12.8 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥DN 80
 12.8.1 Flanged off-takes
 12.8.2 Valves
 12.8.3 Flange holes
 12.8.4 Gaskets

© Water Supply Code of Australia
12.8.5 Bolting system
 12.8.5.1 General
 12.8.5.2 Carbon or alloy steel bolt assemblies
 12.8.5.3 Stainless steel bolt assemblies
12.8.6 Insulation sleeves
12.8.7 Plastics inserts for metallic pipes

13 EXCAVATION
 13.1 PRECAUTIONS
 13.2 LIMITS OF CLEARING AND EXCAVATION
 13.3 PROTECTION OF TREES
 13.3.1 General precautions
 13.3.2 Protection of roots
 13.4 BLASTING
 13.5 SUPPORT OF EXCAVATIONS
 13.6 DRAINAGE AND DEWATERING
 13.7 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES \(\geq\) DN 80
 13.7.1 Excavation requirements
 13.7.2 Extent of excavation
 13.8 EXCAVATION ACROSS IMPROVED SURFACES
 13.9 TRENCH EXCAVATION
 13.9.1 General
 13.9.2 Construction of embankment
 13.9.3 Clearances for on-site works
 13.10 REFILL OF EXCESSIVE EXCAVATION
 13.11 FOUNDATIONS AND FOUNDATION STABILISATION
 13.12 SURPLUS EXCAVATED MATERIAL
 13.13 TUNNELLING

14 BEDDING FOR PIPES
 14.1 TRENCH FLOOR PREPARATION
 14.2 BEDDING AND PIPE SUPPORT
 14.3 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS

15 PIPE LAYING, JOINTING AND CONNECTING
 15.1 INSTALLATION OF PIPES
 15.1.1 General
 15.1.2 Dual water supply areas
 15.1.3 Cleaning, inspection and joint preparation
 15.1.4 Laying
 15.1.5 Lift and re-lay construction
 15.2 HORIZONTAL AND VERTICAL DEFLECTIONS OF PIPES
 15.2.1 General
 15.2.2 Deflection at a pipe joint
 15.2.3 Curving of pipe
 15.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
 15.4 VALVES, HYDRANTS AND OTHER APPURTENANCES
 15.5 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES \(\geq\) DN 80
 15.5.1 Inspection of host pipe
 15.5.2 Inspection of valve to be installed
 15.5.3 Disinfection of fittings and equipment
 15.5.4 Installation of off-take clamp
 15.5.5 Installation of the valve
 15.5.6 Cut-in operation
 15.5.7 Recording and reporting
 15.6 FLOTATION CONTROL
 15.7 THRUST AND ANCHOR BLOCKS AND RESTRANDED JOINTS
 15.8 TAPPING OF MAINS, PROPERTY SERVICES AND WATER METERS
 15.9 TRENCH STOPS
15.10 BULKHEADS
15.11 CORROSION PROTECTION OF DUCTILE IRON
15.12 MARKING TAPES
 15.12.1 Non-detectable marking tape
 15.12.2 Detectable marking tape
 15.12.3 Tracer wire
15.13 VALVES, HYDRANTS AND SURFACE BOXES AND FITTINGS
 15.13.1 Installation
 15.13.2 Valve chambers for large diameter mains
15.14 SCOURS
15.15 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
15.16 AQUEDUCTS
15.17 BRIDGE CROSSINGS
15.18 APPURtenance LOCATION MARKING
15.19 FLANGED JOINTS
15.20 WELDING OF STEEL PIPELINES
 15.20.1 General
 15.20.2 Field welding of flanges
 15.20.3 Reinstatement of cement mortar lining
 15.20.4 Reinstatement of external corrosion protection at joints using a tape system
 15.20.4.1 Surface preparation
 15.20.4.2 Priming surfaces
 15.20.4.3 Mastic filler
 15.20.4.4 Tape application
 15.20.5 Reinstatement of external corrosion protection at joints using a heat-shrinkable sleeve system
 15.20.5.1 Surface preparation
 15.20.5.2 Preheat pipe
 15.20.5.3 Priming surfaces
 15.20.5.4 Mastic filler
 15.20.5.5 Heat-shrinkable sleeve preparation
 15.20.5.6 Heat-shrinkable sleeve application
15.21 WELDING OF PE PIPELINES

16 PIPE EMBEDMENT AND SUPPORT
 16.1 GENERAL
 16.2 EMBEDMENT MATERIALS
 16.3 COMPACTION OF EMBEDMENT
 16.3.1 Methods
 16.4 SPECIAL BEDDING AND EMBEDMENTS / GEOTEXTILE SURROUND AND PILLOW
 16.5 REMOVAL OF TRENCH SUPPORTS
 16.6 CONCRETE EMBEDMENT AND ENCASEMENT

17 FILL
 17.1 TRENCH FILL
 17.1.1 Material requirements
 17.1.1.1 Trafficable Areas
 17.1.1.2 Non-Trafficable Areas
 17.1.2 Placement
 17.1.3 Compaction of trench fill
 17.2 EMBANKMENT FILL
 17.3 DRIVES AND TUNNEL FILL

18 SWABBING
 18.1 GENERAL
 18.2 SWABS
 18.3 SWABBING PROCEDURE

19 ACCEPTANCE TESTING
 19.1 GENERAL
19.2 VISUAL INSPECTION
19.3 COMPACCIÓN TESTING
19.3.1 General
19.3.2 Compaction testing requirements
 19.3.2.1 General
 19.3.2.2 Trafficable areas test zone
 19.3.2.3 Non-trafficable areas test zone
 19.3.2.4 Frequency and location of tests
 19.3.2.5 Retesting
19.4 HYDROSTATIC PRESSURE TESTING
 19.4.1 General
 19.4.2 Mains
 19.4.3 Property services
 19.4.4 Under pressure cut-in connections
19.5 BLOCK TESTING DUAL WATER SUPPLY SYSTEMS FOR CONNECTIVITY
19.6 INSULATED JOINT RESISTANCE TEST
19.7 WATER QUALITY TESTING
 19.7.1 General
 19.7.2 Test procedure
 19.7.3 Satisfactory water quality test
 19.7.4 Failure of test

20 DISINFECTION
 20.1 APPLICATION
 20.2 FLUSHING OF DISINFECTION WATER

21 TOLERANCES ON AS-CONSTRUCTED WORK
 21.1 GENERAL
 21.2 HORIZONTAL TOLERANCES
 21.2.1 Water mains and in-line structures
 21.2.2 Property services and meters
 21.3 VERTICAL TOLERANCES
 21.3.1 Water mains, property connections and structures
 21.3.2 Verticality ("plumb")
 21.4 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
 21.5 CAST IN-SITU CONCRETE STRUCTURES AND SLABS

22 CONNECTIONS TO EXISTING WATER MAINS
 22.1 GENERAL
 22.2 UNDER PRESSURE CONNECTIONS
 22.3 INSERTED TEE CONNECTIONS
 22.3.1 Shutdown of existing water mains
 22.3.2 Making the connection to existing water main
 22.3.3 Re-charging the shutdown water main
 22.4 CONNECTION AND/OR CHARGING THE NEW WATER MAINS
 22.5 RECONNECTION OF PROPERTIES SUPPLIED BY TEMPORARY PRIVATE SERVICES

23 RESTORATION
 23.1 GENERAL
 23.2 PAVEMENTS
 23.3 LAWNS
 23.4 GRASSED AREAS
 23.5 BUSHLAND
 23.6 PROVISION FOR AND RECTIFICATION OF SETTLEMENT
 23.7 MAINTENANCE OF RESTORED SURFACES

24 WORK AS CONSTRUCTED DETAILS
TABLES
Table 18.1 Dimensions of Swabs and Discharge Units
Table 19.1 Minimum Compaction of Embedment, Trench Fill and Embankments

FIGURES
Figure 13.1 Typical Excavation Dimensions
Figure 15.1 Ball and Socket Joint
Figure 15.2 Slip-In Welded Joint
Figure 15.3 Plain End Welded Collar Joint
Figure 15.4 Plain End Butt Welded Joint