CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>7</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>10</td>
</tr>
<tr>
<td>PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS</td>
<td></td>
</tr>
<tr>
<td>I Glossary of Terms</td>
<td>17</td>
</tr>
<tr>
<td>II Abbreviations</td>
<td>31</td>
</tr>
<tr>
<td>III Referenced Documents</td>
<td>35</td>
</tr>
<tr>
<td>PART 1: PLANNING AND DESIGN</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>40</td>
</tr>
<tr>
<td>1 General</td>
<td>52</td>
</tr>
<tr>
<td>2 Water System Planning Guideline</td>
<td>59</td>
</tr>
<tr>
<td>3 Hydraulic Design</td>
<td>60</td>
</tr>
<tr>
<td>4 Products and Materials</td>
<td>70</td>
</tr>
<tr>
<td>5 General Design</td>
<td>81</td>
</tr>
<tr>
<td>6 System Pressure Management</td>
<td>115</td>
</tr>
<tr>
<td>7 Structural Design</td>
<td>139</td>
</tr>
<tr>
<td>8 Appurtenances</td>
<td>170</td>
</tr>
<tr>
<td>9 Design Review and Drawings</td>
<td>211</td>
</tr>
<tr>
<td>PART 2: CONSTRUCTION</td>
<td></td>
</tr>
<tr>
<td>Contents</td>
<td>216</td>
</tr>
<tr>
<td>10 General</td>
<td>221</td>
</tr>
<tr>
<td>11 General Construction</td>
<td>223</td>
</tr>
<tr>
<td>12 Products and Materials</td>
<td>233</td>
</tr>
<tr>
<td>13 Excavation</td>
<td>238</td>
</tr>
<tr>
<td>14 Bedding for Pipes</td>
<td>244</td>
</tr>
<tr>
<td>15 Pipe Laying, Jointing and Connecting</td>
<td>245</td>
</tr>
<tr>
<td>16 Pipe Embedment and Support</td>
<td>259</td>
</tr>
<tr>
<td>17 Fill</td>
<td>262</td>
</tr>
<tr>
<td>18 Swabbing</td>
<td>265</td>
</tr>
<tr>
<td>19 Acceptance Testing</td>
<td>267</td>
</tr>
<tr>
<td>20 Disinfection</td>
<td>275</td>
</tr>
<tr>
<td>21 Tolerances on As-Constructed Work</td>
<td>277</td>
</tr>
<tr>
<td>22 Connections to Existing Water Mains</td>
<td>279</td>
</tr>
<tr>
<td>23 Restoration</td>
<td>283</td>
</tr>
<tr>
<td>24 Work As Constructed Details</td>
<td>285</td>
</tr>
</tbody>
</table>
PART 3: STANDARD DRAWINGS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW 25 Introduction</td>
<td>290</td>
</tr>
<tr>
<td>SW 26 Listing of Standard Drawings</td>
<td>292</td>
</tr>
<tr>
<td>SW 27 Commentary on WAT-1100 Series</td>
<td>295</td>
</tr>
<tr>
<td>SW 28 Commentary on WAT-1200 Series</td>
<td>298</td>
</tr>
<tr>
<td>SW 29 Commentary on WAT-1300 Series</td>
<td>303</td>
</tr>
<tr>
<td>SW 30 Commentary on WAT-1400 Series</td>
<td>306</td>
</tr>
<tr>
<td>SW 31 Commentary on WAT-1800 Series</td>
<td>308</td>
</tr>
</tbody>
</table>
Water Supply Code of Australia

WSA 03—2011-3.1

Sydney Water Edition

2014

Part 1: Planning and Design
CONTENTS

1 GENERAL

1.1 SCOPE

1.2 PLANNING AND DESIGN
 1.2.1 Objectives
 1.2.2 Scope and requirements
 1.2.3 Concept plan format
 1.2.4 Critical infrastructure protection
 1.2.4.1 Asset categorisation
 1.2.4.2 All hazards – Infrastructure protection
 1.2.5 Detailed design
 1.2.5.1 Designer’s needs and responsibilities
 1.2.5.2 Requirements to be addressed
 1.2.5.3 Design outputs
 1.2.6 Design life
 1.2.7 Instrumentation and control systems

1.3 CONSULTATION WITH OTHER PARTIES

2 WATER SYSTEM PLANNING GUIDELINE

3 HYDRAULIC DESIGN

3.1 SIZING
 3.1.1 General
 3.1.2 Minimum pipe sizes
 3.1.3 Empirical sizing of reticulation mains
 3.1.4 Dual water supply systems
 3.1.5 Fire flows
 3.1.6 Sizing by analysis
 3.1.6.1 General
 3.1.6.2 Head losses
 3.1.6.3 Hydraulic roughness values
 3.1.6.4 Flow velocities

3.2 DESIGN PRESSURES
 3.2.1 General
 3.2.2 Gravity systems
 3.2.3 Systems subjected to dynamic pressures

3.3 PRESSURE CLASS OF SYSTEM COMPONENTS
 3.3.1 Gravity systems
 3.3.2 Systems subjected to dynamic pressures

SW 3.3.3 Minimum pressure class

3.4 THRUST AND ANCHOR BLOCK DESIGN

3.5 SYSTEM TEST PRESSURE

3.6 DESIGN FOR DYNAMIC STRESSES
 3.6.1 General
 3.6.2 Surge
 3.6.3 Fatigue
 3.6.4 Fatigue de-rating of plastics pipes and fittings

3.7 TEMPERATURE DE-RATING OF PLASTICS PIPES AND FITTINGS

3.8 PIPELINE COMPONENTS MINIMUM PRESSURE CLASS
4 PRODUCTS AND MATERIALS

4.1 GENERAL

4.2 DIFFERENTIATION OF DRINKING AND NON-DRINKING PIPE SYSTEMS
 4.2.1 Principles
 4.2.2 Water supply mains – drinking water
 4.2.3 Water supply mains – non-drinking water
 4.2.4 Property services – drinking water
 4.2.5 Property services – non-drinking water
 4.2.6 Marking tapes

4.3 DUCTILE IRON PIPELINE SYSTEMS
 4.3.1 Not used
 4.3.2 Sizes and configurations
 4.3.3 Seal coating of lining
 4.3.4 Sleeving
 4.3.5 Screw-on flanges for DI pipes
 4.3.6 Flanged joints

4.4 PVC PIPELINE SYSTEMS

4.5 PE PIPELINE SYSTEMS

4.6 STEEL PIPELINE SYSTEMS
 4.6.1 Not used
 4.6.2 Sizes and configurations
 4.6.3 Joints
 4.6.4 Field welding
 4.6.5 Flanged joints

4.7 GRP PIPELINE SYSTEMS

4.8 PROTECTION AGAINST DEGRADATION
 4.8.1 Application
 4.8.2 Protection against aggressive environments
 4.8.3 Protection against damage to coatings
 4.8.4 Stainless steels
 4.8.4.1 Grade selection
 4.8.4.2 Welding
 4.8.4.3 Threaded components
 4.8.5 Cathodic protection
 4.8.6 Stray current corrosion
 4.8.7 Protection against contaminated ground
 4.8.8 Bolted connections

5 GENERAL DESIGN

5.1 GENERAL REQUIREMENTS
 5.1.1 Design tolerances
 5.1.2 Levels
 5.1.3 Water main renewals—electrical safety and earthing to water services
 5.1.4 Environmental considerations
 5.1.4.1 General
 5.1.4.2 Urban salinity

5.2 RETICULATION DESIGN FOR WATER QUALITY
 5.2.1 Layout of water mains
 5.2.2 Looped mains
 5.2.3 Link mains
 5.2.4 Reduced size mains
 SW 5.2.5 Prevention of back siphonage
 SW 5.2.6 Separation of drinking and non-drinking water supply systems
5.3 WATER MAIN ACCESS

5.4 LOCATION OF WATER MAINS

5.4.1 General
5.4.2 Water mains in road reserves
 5.4.2.1 General
 5.4.2.2 Location in footway
 5.4.2.3 Location in carriageway
 5.4.2.4 Location in roundabouts and bus bays
5.4.3 Location in other than dedicated public road reserves
5.4.4 Water mains in easements
5.4.5 Dual water supply systems
5.4.6 Effect on vegetation
5.4.7 Water mains near trees
5.4.8 Contaminated sites
5.4.9 Crossings
 5.4.9.1 General
 5.4.9.2 Requirements for encased pipe installations
5.4.10 Railway reserves
5.4.11 Crossings of creeks or drainage reserves
5.4.12 Overhead power lines and transmission towers
5.4.13 Water mains in conjunction with landscaping and/or other development
5.4.14 Water mains on curved alignments
5.4.15 Location markers
5.4.16 Marking tape
 5.4.16.1 General
 5.4.16.2 Mains
 5.4.16.3 Property services

5.5 TRENCHLESS TECHNOLOGY FOR PIPELAYING

5.6 SHARED TRENCHING

5.7 DUPLICATE MAINS

5.8 RIDER MAINS

5.9 CONNECTION OF NEW MAINS TO EXISTING MAINS

5.10 TERMINATION POINTS

5.10.1 Permanent ends of water mains
5.10.2 Temporary ends of water mains
5.10.3 Chlorination assemblies
5.10.4 Flushing points

5.11 PROPERTY SERVICES

5.11.1 General
5.11.2 Connections to water mains
5.11.3 Services, outlets and meters

5.12 OBSTRUCTIONS AND CLEARANCES

5.12.1 General
5.12.2 Surface obstructions
5.12.3 Clearance from transmission towers
5.12.4 Clearance from structures and property boundaries
5.12.5 Underground obstructions and services
 5.12.5.1 General
 5.12.5.2 Clearance requirements
5.12.6 Deviation of water mains
 5.12.6.1 General
 5.12.6.2 Horizontal deviation of water mains
5.12.6.3 Vertical deviation of water mains
5.12.6.4 Curving of pipes to avoid obstructions

5.13 DISUSED OR REDUNDANT PIPELINES

6 SYSTEM PRESSURE MANAGEMENT

6.1 GENERAL

6.2 IN-LINE PRESSURE BOOSTER PUMPING STATIONS
 6.2.1 Planning criteria
 6.2.2 Concept design
 6.2.2.1 General
 6.2.2.2 Life cycle considerations
 6.2.2.3 Functionality
 6.2.2.4 Due diligence requirements
 6.2.2.5 Reliability
 6.2.2.6 Maintainability
 6.2.2.7 Materials design
 6.2.2.8 Location
 6.2.2.9 Site selection
 6.2.2.10 Noise control
 6.2.2.11 Services
 6.2.2.12 Access
 6.2.2.13 Site drainage
 6.2.2.14 Landscaping
 6.2.2.15 Security
 6.2.2.16 Signage
 6.2.2.17 Supporting systems
 6.2.2.18 Health and safety
 6.2.3 Commissioning plan
 6.2.3.1 General
 6.2.3.2 Pre-commissioning
 6.2.3.3 Commissioning
 6.2.4 System planning and modelling
 6.2.4.1 Modelling
 6.2.4.2 Minimum pressure affecting the area
 6.2.4.3 Number of affected properties within the low pressure zone
 6.2.5 Booster design
 6.2.5.1 General
 6.2.5.2 Connection to the network
 6.2.5.3 Maximum flow and pressure requirements
 6.2.5.4 Design for minimum pressure boost conditions
 6.2.5.5 Design for minimum flow conditions
 6.2.5.6 Booster configuration design
 6.2.5.7 Booster set and pump selection
 6.2.5.8 Booster pipework and manifold design
 6.2.5.9 Booster equipment and devices
 6.2.5.10 Site specific requirements
 6.2.6 Booster pipework
 6.2.6.1 General design parameters
 6.2.6.2 Manifolds, off-takes, suction and delivery pipework
 6.2.6.3 Pressure gauges and tappings
 6.2.7 Pressure accumulator tank
 6.2.8 Power system and supply
 6.2.8.1 General
 6.2.8.2 Security of supply
 6.2.8.3 Primary supply
 6.2.8.4 Duplicate supply
6.2.8.5 Emergency power
6.2.8.6 On-site generator
6.2.8.7 Mobile generator
6.2.8.8 Power factor correction
6.2.8.9 Lighting
6.2.9 Control and telemetry system
 6.2.9.1 General
 6.2.9.2 Instrumentation
 6.2.9.3 System requirements
 6.2.9.4 Fire flow operation
6.2.10 Alarms and controls
 6.2.10.1 General
 6.2.10.2 Control switches – manual and emergency operation
6.2.11 Telemetry
 6.2.11.1 General
 6.2.11.2 Software
 6.2.11.3 Communications
6.3 PRESSURE REDUCING VALVE INSTALLATIONS
 6.3.1 Planning criteria
 6.3.2 Design requirements
6.4 PRESSURE SUSTAINING VALVE INSTALLATIONS
 6.4.1 Planning criteria
 6.4.2 Design requirements

7 STRUCTURAL DESIGN

7.1 GENERAL
7.2 STRUCTURAL CONSIDERATIONS
7.3 INTERNAL FORCES
7.4 EXTERNAL FORCES
 7.4.1 General
 7.4.2 Pipe cover
 7.4.3 Embedment zone dimensions
 7.4.4 Pipe embedment
 7.4.5 Buoyancy
7.5 GEOTECHNICAL CONSIDERATIONS
 7.5.1 General
 7.5.2 Water mains in engineered or controlled fill
 7.5.3 Water mains in non-engineered fill
 7.5.4 Construction of an embankment
7.6 CONCRETE ENCASEMENT
 7.6.1 General
 7.6.2 Requirements
 7.6.3 Encased steel pipelines
 7.6.3.1 General
 7.6.3.2 Existing steel pipelines
7.7 WATER MAINS IN UNSTABLE GROUND
 7.7.1 General
 7.7.2 Mine subsidence areas
 7.7.3 Slip areas
7.8 ABOVE-GROUND WATER MAINS
7.9 PIPELINE ANCHORAGE
 7.9.1 General
 7.9.2 Thrust blocks
7.9.2.1 General
7.9.2.2 Concrete thrust blocks
7.9.2.3 Use of puddle flanges to transfer thrust
7.9.2.4 Timber and recycled plastics thrust blocks
7.9.3 Anchor blocks
7.9.4 Thrust and anchor blocks for dual water supply systems
7.9.5 Restrained elastomeric seal joint water mains
7.9.6 Restraint requirements for special situations
7.9.6.1 Above-ground mains with unrestrained flexible joints
7.9.6.2 Buried steel mains with welded joints
7.9.6.3 Above-ground steel mains with welded joints
7.9.6.4 Ductile iron and steel mains with flanged joints
7.9.6.5 PE mains

7.10 BULKHEADS AND TRENCHSTOPS

7.11 UNFORESEEN GROUND CONDITIONS

8 APPURTENANCES
8.1 VALVES—GENERAL
8.1.1 Valving design
8.1.2 Valve siting principles
8.1.3 Selection considerations
8.1.4 Local in-line booster pumping stations
8.1.5 Plastics identification covers

8.2 STOP VALVES
8.2.1 Not used
8.2.2 Installation design and selection criteria
8.2.2.1 General
8.2.2.2 Gate valves
8.2.2.3 Butterfly valves
8.2.3 Stop valves for transfer/distribution mains
8.2.4 Stop valves for reticulation mains
8.2.5 Stop valves for local in-line booster pumping stations
8.2.6 Bypass of stop valve
8.2.7 Stop valves—location and arrangements
8.2.7.1 General
8.2.7.2 Arrangement 1
8.2.7.3 Arrangement 2
8.2.7.4 Arrangement 3
8.2.7.5 Arrangement 4
8.2.7.6 Arrangement 5
8.2.7.7 Arrangement 6
8.2.7.8 Arrangement 7
8.2.8 Stop valve special arrangements
8.2.9 Rider mains and network configurations
8.2.10 Crossing mains – interconnection

8.3 CONTROL VALVES
8.3.1 Not used
8.3.2 Automatic inlet control valves (AICV)
8.3.3 Pressure reducing valves (PRV)
8.3.4 Pressure relief valves (PRelV)
8.3.5 Pump control valves
8.3.6 Pressure sustaining valves (PSV)

8.4 AIR VALVES (AV)
8.4.1 Not used
8.4.2 Installation design criteria
8.4.3 Air valves type
8.4.4 Air valves size
8.4.5 Air valves location
8.4.6 Use of hydrants as an alternative to air valves
8.4.7 Water sampling via air valves

8.5 NON-RETURN VALVES
8.5.1 Not used
8.5.2 Installation design criteria
8.5.3 Typical installations of non-return valves

8.6 SCOURS AND PUMP-OUT BRANCHES
8.6.1 Location and arrangements
8.6.2 Design
8.6.3 Scour application
8.6.4 Scour size
8.6.5 Scour location

8.7 SWABBING POINTS

8.8 HYDRANTS
8.8.1 Not used
8.8.2 Purposes
8.8.3 Hydrant siting principles
8.8.4 Hydrant types
8.8.5 Hydrant installation
8.8.6 Hydrant outlet connections
8.8.7 Hydrant size
8.8.8 Hydrant spacing
8.8.9 Hydrant location
8.8.10 Hydrants for reticulation system operational requirements
8.8.11 Hydrants at ends of mains

8.9 DISINFECTION FACILITIES
8.9.1 General
8.9.2 Reticulation mains
8.9.3 Transfer and distribution mains
8.9.4 Discharge

8.10 SURFACE FITTINGS
8.10.1 Not used
8.10.2 General
8.10.3 Marking of surface fittings
8.10.4 Installation requirements

8.11 APPURTENANCE LOCATION MARKING
8.11.1 General
8.11.2 Indicator plates and other markers
8.11.3 Pavement markers
8.11.4 Kerb markings

SW 8.12 SAMPLING POINTS ON DISTRIBUTION AND TRANSFER MAINS

9 DESIGN REVIEW AND DRAWINGS

9.1 DESIGN REVIEW

9.2 DESIGN DRAWINGS
9.2.1 General
9.2.2 Composition of Design Drawings
9.2.3 Scale
9.2.4 Contents of Design Drawings
9.2.5 Pipeline system acronyms
9.2.6 Water mains >DN 300

9.3 SPECIFICATIONS

9.4 RECORDING OF WORK AS CONSTRUCTED INFORMATION

TABLES

Table 1.1 Asset Categories
Table 1.2 Typical Asset Design Lives
Table 2.1 Not used
Table 2.2 Not used
Table 2.3 Not used
Table 3.1 Minimum Pipe Sizes for Greenfield Developments
Table SW 3.5 Minimum Pipe Sizes for Infill Developments
Table 3.2 Empirical Guide for Pipe Sizing
Table SW 3.6 Minimum Pipe Sizes for Dual Supply Developments
Table SW 3.7 Test and Asset Design Pressures – Based on System Pressure
Table 3.3 Methods for Design of Plastics Pipes and Fittings for Dynamic Stresses
Table 3.4 Temperature De-Rating Factors for Plastics Pipes Operating at Elevated Temperatures
Table 4.1 Colour Differentiation of Drinking Water and Non-Drinking Water Components in Dual Water Reticulation Systems
Table 5.1 Not used
Table 5.2 Default Easement Guidelines
Table 5.3 Trench Details for Two Parallel Mains/Services
Table 5.4 Residential Property Service Pipe/Connection Sizes
Table 5.5 Clearances Between Water Mains and Underground Services
Table 6.1 Flow Velocities
Table 7.1 Not used
Table 7.2 Minimum Depths of Pipe Cover
Table 7.3 Minimum Thrust Area for Concrete Blocks at 1000 kPa System Test Pressure
Table 7.4 Not used
Table 7.5 Requirements for Bulkheads and Trenchstops
Table SW 7.6 Minimum Installation Treatments for Water Mains
Table 8.1 Colour Coding of Spindle Cap Plastics Covers
Table 8.2 Stop Valve Spacing Criteria
Table 8.3 Maximum Water Main Drainage Times
Table 8.4 Minimum Scour Size

FIGURES

Figure 1.1 Typical Water Supply System
Figure 2.1(a) Not used
Figure 2.1(b) Not used
Figure 7.3 Type B Embedment Support
Figure 7.4 Type C and D Embedment Support
Figure 7.5 Type E Embedment Support
Figure 7.6 Type F Embedment Support
Figure 7.7 Type G Embedment Support
Figure 7.8 Type H Embedment Support
Figure 7.9 Type J and K Concrete Encasement Embedment Support
Figure 7.10 Alternative End Treatment for Concrete Encased Steel Pipelines
Figure 7.11 Thrust Block for Tees (for Horizontal Thrust)
Figure 7.12 Thrust Block for Bends (for Horizontal Thrust)
Figure 7.13 Taper Thrust Block (for Horizontal Thrust)
Figure 7.14 Flushing/Washout Bend Thrust Block (for Horizontal Thrust)
(Minimum Required Thrust Area as Per Dead-End)
Figure SW 7.15 Typical Concrete Thrust Block for Flanged Valves
Figure 7.16 Typical Concrete Thrust Block for Socketed Valves
Figure 7.17 Not used
Figure 7.18 Typical Valve Restraint Mechanism
Figure 7.19 Typical Concrete Thrust Blocks for Adjacent Dual Water Mains
Figure 7.20 Typical Concrete Bulkhead Detail
Figure 7.21 Typical Road Crossing Bulkhead
Figure 7.22 Typical Trench Stop Detail
Figure 7.23 Typical Trench Drainage Detail at Bulkhead
Figure 7.24 Typical Trench Drainage Detail at Low Point in Trench
Figure 7.25 Typical Trench Drainage Detail at Concrete Encased Sections
Figure 7.26 Typical Trench Drainage Discharge
Figure 8.1 Plastics Identification Cover
Figure 8.2 Typical Gate Valve and Hydrant Installation at Standard Depth
Figure 8.3 Typical Gate Valve Installation at Deeper Than Standard Depth
Figure 8.4 Typical Valve Chamber Arrangement for DN 500 and DN 600 Mains – Plan View
Figure 8.5 Typical Valve Chamber Arrangement for a DN 750 Main – Plan View
Figure 8.6 Typical Valve Chamber Arrangement – Cross Section
Figure 8.7 Not used
Figure 8.8 Branch Valve Adjacent to Main
Figure 8.9 Branch Valve Adjacent to Inner Splay Corner
Figure 8.10 Valve and Hydrant Combinations
Figure 8.11 Valve Adjacent to a Taper
Figure 8.12 Valves in Main Cross-Links
Figure 8.13 Valves in Conjunction With Control Valves
Figure 8.14 Two Direction Supply
Figure 8.15 Off-take Arrangement for Rider Mains
Figure 8.16 Interconnection of DN 200 and DN 225 Crossing Mains
Figure 8.17 Interconnection of Reticulation and Distribution Mains
Figure 8.18 Interconnection of Distribution Mains
Figure 8.19 Interconnection of a Continuing Reticulation Main and Larger Main
Figure 8.20 Typical Pressure Reducing Valve Installation – Sectional Elevation
Figure 8.21 Alternative Above-Ground Installation – PRV on Bypass – Side Elevation
Figure 8.22 PRV on Main Line With Bypass – Plan View
Figure 8.23 Typical Air Valve Orientation
Figure 8.24 Typical Air Valve Installation
Figure 8.25 Scour Detail
Figure 8.26 Scour Discharge to Approved Drainage System
Figure 8.27 Scour Discharge Collection/Pump-Out Sump
Figure 8.28 Scour Discharge to Storage Lagoon
Figure 8.29 Spring Hydrant – Typical Direct Connection
Figure 8.30 Isolating Valve Assembly With Spring Hydrant
Figure 8.31 Typical Hydrant Installation in Non-Trafficable Location
Figure 8.32 Typical Hydrant Installation in Trafficable asphaltic Concrete Pavement
Figure 8.33 Typical Hydrant With Isolating Valve Installation With Spring Hydrant Option in Non-Trafficable Location
Figure 8.34 Typical Offsetting of Hydrants in Footway
Figure 8.35 Non-Trafficable Stop Valve Surface Box
Figure 8.36 Typical Trafficable Stop Valve Surface Boxes
Figure 8.37 Typical Trafficable Hydrant Surface Boxes
Figure 8.38 Retro-Reflective Pavement Markers
Figure 8.39 Kerb Markings
Water Supply Code of Australia

WSA 03—2011-3.1

Sydney Water Edition

2014

Part 2: Construction
CONTENTS

10 GENERAL
10.1 SCOPE
10.2 INTERPRETATION

11 GENERAL CONSTRUCTION
11.1 GENERAL
11.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
11.3 CONTRACT INTERFACES
11.4 CUSTOMER FOCUS
 11.4.1 General
 11.4.2 Resolution of complaints
11.5 PROTECTION OF PROPERTY AND ENVIRONMENT
 11.5.1 Protection of other services
 11.5.2 Disused / Redundant water mains
 11.5.3 Road reserves or other thoroughfares
 11.5.3.1 Road opening permits
 11.5.3.2 Treatment of pavements and other surfaces
 11.5.3.3 Cleanliness of roads, paths, accesses and drainage paths
 11.5.3.4 Storage of products, materials and equipment
 11.5.3.5 Obstruction of street drainage
 11.5.4 Private and public properties
 11.5.5 Protection of the environment and heritage areas
 11.5.5.1 General
 11.5.5.2 Collection and disposal of wastes
 11.5.5.3 Protection of adjacent lands and vegetation
 11.5.5.4 Control of water pollution
 11.5.5.5 Contaminated soils
 11.5.5.6 Fire ant areas
 11.5.5.7 Control of noise and atmospheric pollution
 11.5.5.8 Equipment and machinery use in bush fire prone areas
 11.5.5.9 Potentially unstable areas
11.6 OPERATION OF WATER SUPPLY NETWORK
11.7 ALTERATION OF EXISTING SERVICES
11.8 CONNECTION TO AND WORK ON EXISTING ASBESTOS WATER MAINS
11.9 CUT-IN CONNECTION EQUIPMENT
11.10 SURVEY MARKS
11.11 CONSTRUCTION TOLERANCES
11.12 LATENT CONDITIONS

12 PRODUCTS AND MATERIALS
12.1 AUTHORISED PRODUCTS AND MATERIALS
 12.1.1 General
12.2 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
12.3 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
 12.3.1 General
 12.3.2 Transportation
 12.3.3 Unloading and handling
 12.3.4 On-site storage
12.4 REJECTED PRODUCTS AND MATERIALS
12.5 CONCRETE WORKS
12.6 SUPPLY OF WATER TO THE WORKS
12.7 SUPPLY OF WATER TO EXISTING PROPERTIES
12.8 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥ DN 80
 12.8.1 Flanged off-takes
 12.8.2 Valves
 12.8.3 Flange holes
12.8.4 Gaskets
12.8.5 Bolting system
 12.8.5.1 General
 12.8.5.2 Carbon or alloy steel bolt assemblies
 12.8.5.3 Stainless steel bolt assemblies
12.8.6 Insulation sleeves
12.8.7 Plastics inserts for metallic pipes

13 EXCAVATION
13.1 PRECAUTIONS
13.2 LIMITS OF CLEARING AND EXCAVATION
13.3 PROTECTION OF TREES
 13.3.1 General precautions
 13.3.2 Protection of roots
13.4 BLASTING
13.5 SUPPORT OF EXCAVATIONS
13.6 DRAINAGE AND DEWATERING
13.7 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥DN 80
 13.7.1 Excavation requirements
 13.7.2 Extent of excavation
13.8 EXCAVATION ACROSS IMPROVED SURFACES
13.9 TRENCH EXCAVATION
 13.9.1 General
 13.9.2 Construction of embankment
 13.9.3 Clearances for on-site works
13.10 REFILL OF EXCESSIVE EXCAVATION
13.11 FOUNDATIONS AND FOUNDATION STABILISATION
13.12 SURPLUS EXCAVATED MATERIAL
13.13 TRENCHLESS EXCAVATION

14 BEDDING FOR PIPES
14.1 TRENCH FLOOR PREPARATION
14.2 BEDDING AND PIPE SUPPORT
14.3 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS

15 PIPE LAYING, JOINTING AND CONNECTING
15.1 INSTALLATION OF PIPES
 15.1.1 General
 15.1.2 Dual water supply areas
 15.1.3 Cleaning, inspection and joint preparation
 15.1.4 Laying
 15.1.5 Lift and re-lay construction
15.2 HORIZONTAL AND VERTICAL DEFLECTIONS OF PIPES
 15.2.1 General
 15.2.2 Deflection at a pipe joint
 15.2.3 Curving of pipe
15.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
15.4 VALVES, HYDRANTS AND OTHER APPURTENANCES
15.5 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥DN 80
 15.5.1 Inspection of host pipe
 15.5.2 Inspection of valve to be installed
 15.5.3 Disinfection of fittings and equipment
 15.5.4 Installation of off-take clamp
 15.5.5 Installation of the valve
 15.5.6 Cut-in operation
 15.5.7 Recording and reporting
15.6 FLOTATION CONTROL
15.7 THRUST AND ANCHOR BLOCKS AND RESTRAINED JOINTS
15.8 TAPPING OF MAINS, PROPERTY SERVICES AND WATER METERS
15.9 TRENCH STOPS
15.10 BULKHEADS
15.11 CORROSION PROTECTION OF DUCTILE IRON
15.12 MARKING TAPES
 15.12.1 Non-detectable marking tape
 15.12.2 Detectable marking tape
 15.12.3 Tracer wire
15.13 VALVES, HYDRANTS AND SURFACE BOXES AND FITTINGS
 15.13.1 Installation
 15.13.2 Valve chambers for large diameter mains
15.14 SCOURS
15.15 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
15.16 AQUEDUCTS
15.17 BRIDGE CROSSINGS
15.18 APPURTenANCE LOCATION MARKING
15.19 FLANGED JOINTS
15.20 WELDING OF STEEL PIPELINES
 15.20.1 General
 15.20.2 Field welding of flanges
 15.20.3 Reinstatement of cement mortar lining
 15.20.4 Reinstatement of external corrosion protection at joints using a tape system
 15.20.4.1 Surface preparation
 15.20.4.2 Priming surfaces
 15.20.4.3 Mastic filler
 15.20.4.4 Tape application
 15.20.5 Reinstatement of external corrosion protection at joints using a heat-shrinkable sleeve system
 15.20.5.1 Surface preparation
 15.20.5.2 Preheat pipe
 15.20.5.3 Priming surfaces
 15.20.5.4 Mastic filler
 15.20.5.5 Heat-shrinkable sleeve preparation
 15.20.5.6 Heat-shrinkable sleeve application
15.21 WELDING OF PE PIPELINES
SW 15.22 CONNECTION TO EXISTING STEEL MAINS

16 PIPE EMBEDMENT AND SUPPORT
16.1 GENERAL
16.2 EMBEDMENT MATERIALS
 SW 16.2.1 General
 SW 16.2.2 Recycled, reused and waste materials
16.3 COMPACTION OF EMBEDMENT
 16.3.1 Methods
 SW 16.3.2 Compaction trials / Pre-qualification of embedment compaction method
 SW 16.3.2.1 General
 SW 16.3.2.2 Test method
 SW 16.3.2.3 Interpretation and applicability
 SW 16.3.3 Compaction control
16.4 SPECIAL BEDDING AND EMBEDMENTS / GEOTEXTILE SURROUND AND PILLOW
16.5 REMOVAL OF TRENCH SUPPORTS
16.6 CONCRETE EMBEDMENT AND ENCASEMENT

17 FILL
17.1 TRENCH FILL
 17.1.1 Material requirements
 17.1.1.1 Trafficable Areas
 17.1.1.2 Non-Trafficable Areas
 17.1.2 Placement
 17.1.3 Compaction of trench fill
18 SWABBING
18.1 GENERAL
18.2 SWABS
18.3 SWABBING PROCEDURE

19 ACCEPTANCE TESTING
19.1 GENERAL
19.2 VISUAL INSPECTION
19.3 COMPACTION TESTING
19.3.1 General
19.3.2 Not used
19.3.2.1 Not used
19.3.2.2 Not used
19.3.2.3 Not used
19.3.2.4 Not used
19.3.2.5 Not used
SW 19.3.3 Minimum compaction
SW 19.3.4 Embedment compaction testing
SW 19.3.4.1 Applicable pipe sizes
SW 19.3.4.2 Frequency and location of embedment tests
SW 19.3.4.3 Retesting
SW 19.3.5 Trench fill compaction testing
SW 19.3.5.1 Trafficable areas test zone
SW 19.3.5.2 Non-trafficable areas test zone
SW 19.3.5.3 Property services
SW 19.3.5.4 Frequency and location of tests
SW 19.3.5.5 Retesting
SW 19.3.6 Other fill compacting testing
SW 19.3.6.1 General
SW 19.3.6.2 Trafficable areas test zone
SW 19.3.6.3 Non-trafficable areas test zone
SW 19.3.6.4 Frequency and location of tests
SW 19.3.6.5 Retesting

19.4 HYDROSTATIC PRESSURE TESTING
19.4.1 General
19.4.2 Mains
19.4.3 Property services
19.4.4 Under pressure cut-in connections
SW 19.4.5 Alternative pressure test
SW 19.4.5.1 Application
SW 19.4.5.2 Pipeline extension/connection by inserted tee method

19.5 BLOCK TESTING DUAL WATER SUPPLY SYSTEMS FOR CONNECTIVITY
19.6 INSULATED JOINT RESISTANCE TEST
19.7 WATER QUALITY TESTING
19.7.1 General
19.7.2 Test procedure
19.7.3 Satisfactory water quality test
19.7.4 Failure of test

20 DISINFECTION
20.1 APPLICATION
20.2 FLUSHING OF DISINFECTION WATER

21 TOLERANCES ON AS-CONSTRUCTED WORK
21.1 GENERAL
21.2 HORIZONTAL TOLERANCES
21.2.1 Water mains and in-line structures
21.2.2 Property services and meters
21.3 VERTICAL TOLERANCES
 21.3.1 Water mains, property connections and structures
 21.3.2 Verticality ("plumb")
21.4 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
21.5 CAST IN-SITU CONCRETE STRUCTURES AND SLABS

22 CONNECTIONS TO EXISTING WATER MAINS
 22.1 GENERAL
 SW 22.1.1 Preparation for connection to existing water mains
22.2 UNDER PRESSURE CONNECTIONS
22.3 INSERTED TEE CONNECTIONS
 22.3.1 Shutdown of existing water mains
 22.3.2 Making the connection to existing water main
 22.3.3 Re-charging the shutdown water main
22.4 CONNECTION AND/OR CHARGING THE NEW WATER MAINS
22.5 RECONNECTION OF PROPERTIES SUPPLIED BY TEMPORARY PRIVATE SERVICES

23 RESTORATION
 23.1 GENERAL
 23.2 PAVEMENTS
 23.3 LAWNS
 23.4 GRASSED AREAS
 23.5 BUSHLAND
 23.6 PROVISION FOR AND RECTIFICATION OF SETTLEMENT
 23.7 MAINTENANCE OF RESTORED SURFACES

24 WORK AS CONSTRUCTED DETAILS

TABLES
Table 18.1 Dimensions of Swabs and Discharge Units
Table 19.1 Minimum Compaction of Embedment, Trench Fill and Embankments

FIGURES
Figure 13.1 Typical Excavation Dimensions
Figure 15.1 Ball and Socket Joint
Figure 15.2 Slip-In Welded Joint
Figure 15.3 Plain End Welded Collar Joint
Figure 15.4 Plain End Butt Welded Joint
Water Supply Code of Australia
WSA 03—2011-3.1
Sydney Water Edition
2014

Part 3: Standard Drawings
CONTENTS

SW 25 INTRODUCTION
 SW 25.1 GENERAL
 SW 25.2 DRAWING COMMENTARY
 SW 25.3 BASE STANDARD DRAWINGS
 SW 25.4 VARIED STANDARD DRAWINGS
 SW 25.5 SUPPLEMENTARY (ADDITIONAL) STANDARD DRAWINGS
 SW 25.6 DEEMED TO COMPLY DRAWINGS

SW 26 LISTING OF STANDARD DRAWINGS

SW 27 COMMENTARY ON WAT–1100 SERIES – PIPELINE LAYOUT
 SW 27.1 GENERAL
 SW 27.2 WAT–1102-V, WAT-1103, WAT-1104-V AND WAT–1105-V – TYPICAL MAINS CONSTRUCTION
 SW 27.2.1 WAT–1102-V – Reticulation main arrangements
 SW 27.2.2 WAT–1103 – Distribution and transfer mains
 SW 27.2.3 WAT–1104-V – DN 63 PE cul-de-sac arrangement
 SW 27.2.4 WAT–1105-V – Connection to existing mains
 SW 27.3 WAT–1106-V – PROPERTY SERVICES – MAIN-TO-METER
 SW 27.4 WAT–1108-V – PROPERTY SERVICES – CONNECTION TO MAIN
 SW 27.5 WAT–1150-S – WATER MAIN SYMBOLS
 SW 27.6 WAT–1151-S AND WAT–1152-S – DESIGN LAYOUTS – UTILITY SERVICES – SPACE ALLOCATIONS IN FOOTWAYS

SW 28 COMMENTARY ON WAT–1200 SERIES – EMBEDMENT, TRENCH FILL AND RESTRAINTS
 SW 28.1 GENERAL
 SW 28.2 WAT–1200 – SOIL CLASSIFICATION GUIDELINES
 SW 28.3 WAT–1201 – EMBEDMENT AND TRENCH FILL
 SW 28.4 WAT–1202-V – STANDARD EMBEDMENT – ALL PIPE TYPES
 SW 28.5 WAT–1203 – SPECIAL EMBEDMENTS – INADEQUATE AND POOR FOUNDATION
 SW 28.6 WAT–1204-V – SPECIAL EMBEDMENTS – CONCRETE, GEOTEXTILE AND CEMENT STABILISED SYSTEMS
 SW 28.7 WAT–1205 – THRUST BLOCK DETAILS – CONCRETE BLOCKS
 SW 28.8 WAT–1207-V – THRUST AND ANCHOR BLOCKS – GATE VALVES AND VERTICAL BENDS
 SW 28.9 WAT–1208-V – RESTRAINED JOINT SYSTEM – DN 100 TO DN 375 DI MAINS
 SW 28.10 WAT–1209 – TRENCH DRAINAGE – BULKHEADS AND TRENCHSTOP
 SW 28.11 WAT–1210 – TRENCH DRAINAGE – TYPICAL SYSTEMS
 SW 28.13 WAT-1250-S AND WAT-1251-S – STANDARD TRENCH DETAILS
 SW 28.14 WAT-1252-S – THRUST BLOCK DETAILS
 SW 28.15 WAT-1253-S AND WAT-1254-S – ANCHORAGE DETAILS – STOP VALVE INSTALLATIONS
 SW 28.16 WAT-1255-S – BURIED CROSSINGS

SW 29 COMMENTARY ON WAT–1300 SERIES – INSTALLATION PRACTICES / STRUCTURES
 SW 29.1 GENERAL
SW 29.2 WAT–1301-V AND WAT–1302-V – TYPICAL VALVE & HYDRANT INSTALLATION
SW 29.3 WAT–1303-V, WAT-1304-V, WAT-1305-V AND WAT–1306-V – TYPICAL SURFACE FITTING INSTALLATION
SW 29.4 WAT–1307-V – TYPICAL APPURtenANCE (SCOUR) INSTALLATION
SW 29.5 WAT–1308-V AND WAT–1309-V – TYPICAL APPURtenANCE (VALVE) INSTALLATION
SW 29.6 WAT–1310, WAT-1311 AND WAT–1312 – AERIAL CROSSINGS
SW 29.7 WAT–1313 – FLANGED JOINTS
SW 29.8 WAT-1350-S AND WAT-1351-S – TYPICAL APPURtenANCE (VALVE) INSTALLATION
SW 29.9 WAT-1352-S AND WAT-1353-S – MARKING SYSTEMS – INDICATOR PLATES
SW 29.10 WAT-1354-S – POTENTIALLY UNSTABLE / LANDSLIP AREAS – MONITORING PITS

SW 30 COMMENTARY ON WAT–1400 SERIES – FABRICATION DETAILS
SW 30.1 GENERAL
SW 30.2 WAT–1400 – TYPICAL STEEL PIPE JOINTING – BUTT WELDING OF JOINTS
SW 30.3 WAT–1401-V – TYPICAL STEEL PIPE JOINTING – RRJ SPIGOT BANDS
SW 30.4 WAT–1402 – TYPICAL STEEL PIPE JOINTING – WELDED PIPE COLLARS
SW 30.5 WAT–1403-V – TYPICAL STEEL FABRICATION – BENDS
SW 30.6 WAT–1404 – TYPICAL STEEL FABRICATION – ACCESS OPENINGS
SW 30.7 WAT–1405 – TYPICAL STEEL FABRICATION – DISMANTLING AND FLEXIBLE JOINTS
SW 30.8 WAT–1406-V AND WAT–1407-V – VALVE CONNECTION & BY-PASS ARRANGEMENTS
SW 30.9 WAT-1408-V – JOINT CORROSION PROTECTION
SW 30.10 WAT-1409 – HYDRANT INSTALLATION FITTINGS – PE ASSEMBLIES
SW 30.11 WAT-1450-S – TYPICAL STEEL PIPE JOINTING – LEAD AND RR JOINTS

SW 31 COMMENTARY ON WAT-1800 SERIES – DUAL WATER RETICULATION SYSTEMS

TABLES
TABLE SW 28.1 MINIMUM TRENCH DIMENSIONS