Water Supply Code of Australia

WSA 03—2011-3.1

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 2.0

Previous edition WSA 03: 2002-2.3
CONTENTS

PREFACE

6

INTRODUCTION

9

PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS

I Glossary of Terms	12
II Abbreviations	29
III Referenced Documents	33

PART 1: PLANNING AND DESIGN

Contents	38
1 General	51
2 System Planning	58
3 Hydraulic Design	79
4 Products and Materials	89
5 General Design	101
6 System Pressure Management	128
7 Structural Design	151
8 Appurtenances	165
9 Design Review and Drawings	194

PART 2: CONSTRUCTION

Contents	200
10 General	206
11 General Construction	208
12 Products and Materials	219
13 Excavation	224
14 Bedding for Pipes	229
15 Pipe Laying, Jointing and Connecting	230
16 Pipe Embedment and Support	249
17 Fill	251
18 Swabbing	254
19 Acceptance Testing	256
20 Disinfection	263
21 Tolerances on As-Constructed Work	264
22 Connections to Existing Water Mains	266
23 Restoration	270
24 Work As Constructed Details	272
Water Supply Code of Australia
WSA 03—2011-3.1
Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 2.0

Part 1: Planning and Design
CONTENTS

1 GENERAL

1.1 SCOPE

1.2 PLANNING AND DESIGN

1.2.1 Objectives

1.2.2 Scope and requirements

1.2.3 Concept plan format

1.2.4 Critical infrastructure protection

1.2.4.1 Asset categorisation

1.2.4.2 All hazards – Infrastructure protection

1.2.5 Detailed design

1.2.5.1 Designer’s needs and responsibilities

1.2.5.2 Requirements to be addressed

1.2.5.3 Design outputs

1.2.6 Design life

1.2.7 Instrumentation and control systems

1.3 CONSULTATION WITH OTHER PARTIES

2 SYSTEM PLANNING

2.1 GENERAL

2.2 SYSTEM PLANNING PROCESS

2.2.1 General

2.2.2 Extending / upgrading an existing water supply system

2.2.3 Providing a new water supply

2.2.4 Non-drinking water as drinking water substitution

2.3 DEMANDS

2.3.1 General

2.3.2 Dual water supply systems

2.3.2.1 General

2.3.2.2 Rainwater tanks

2.3.3 Demand assessment

2.3.3.1 General

2.3.3.2 Residential

2.3.3.3 Non-residential

2.3.4 Peak demands

2.3.4.1 General

2.3.4.2 Peak day demand

2.3.4.3 Peak hour demand

2.4 SYSTEM CONFIGURATION

2.5 SYSTEM HYDRAULICS

2.5.1 General

2.5.2 Network analysis

2.5.3 Operating pressures

2.5.3.1 Service pressure

2.5.3.2 Maximum allowable service pressure

2.5.3.3 Minimum service pressure

2.5.3.4 Average service pressure

2.5.4 Pressure variation analysis

2.5.5 Determining supply zones

2.5.5.1 General

2.5.5.2 Use of minimum allowable or desirable minimum service pressures
2.5.5.3 Use of desirable minimum static pressure

2.6 WATER QUALITY
 2.6.1 General
 2.6.2 Prevention of back siphonage
 2.6.3 Water age
 2.6.4 Disinfection

2.7 SEPARATION OF DRINKING AND NON-DRINKING WATER SUPPLY SYSTEMS
 2.7.1 Permanent cross links and cross connections
 2.7.2 Temporary cross links

2.8 PUMPING STATIONS
 2.8.1 General
 2.8.2 Design factors
 - 2.8.2.1 System related factors
 - 2.8.2.2 Site related factors
 - 2.8.2.3 Service related factors
 2.8.3 Concept design

2.9 SERVICE RESERVOIRS
 2.9.1 Storage capacity
 2.9.2 Location

2.10 TRENCHLESS TECHNIQUES FOR PIPELAYING

2.11 FUTURE SYSTEM EXPANSION

2.12 SYSTEM REVIEW

3 HYDRAULIC DESIGN

3.1 SIZING
 - 3.1.1 General
 - 3.1.2 Minimum pipe sizes
 - 3.1.3 Empirical sizing of reticulation mains
 - 3.1.4 Dual water supply systems
 - 3.1.5 Fire flows (fire fighting hydrants and fire services)
 - 3.1.6 Sizing by analysis
 - 3.1.6.1 General
 - 3.1.6.2 Head losses
 - 3.1.6.3 Hydraulic roughness values
 - 3.1.6.4 Flow velocities

3.2 DESIGN PRESSURES
 - 3.2.1 General
 - 3.2.2 Gravity systems
 - 3.2.3 Pumped systems

3.3 PRESSURE CLASS OF SYSTEM COMPONENTS
 - 3.3.1 Pumped systems

3.4 THRUST AND ANCHOR BLOCK DESIGN

3.5 SYSTEM TEST PRESSURE

3.6 DESIGN FOR DYNAMIC STRESSES
 - 3.6.1 General
 - 3.6.2 Surge
 - 3.6.3 Fatigue
 - 3.6.4 Fatigue de-rating of plastics pipes and fittings

3.7 TEMPERATURE DE-RATING OF PLASTICS PIPES AND FITTINGS

3.8 PIPELINE COMPONENTS MINIMUM PRESSURE CLASS
4 PRODUCTS AND MATERIALS

4.1 GENERAL

4.2 DIFFERENTIATION OF DRINKING AND NON-DRINKING PIPE SYSTEMS
 4.2.1 Principles
 4.2.2 Water supply mains – drinking water
 4.2.3 Water supply mains – non-drinking water
 4.2.4 Property services – drinking water
 4.2.5 Property services – non-drinking water
 4.2.6 Marking tapes

4.3 DUCTILE IRON PIPELINE SYSTEMS
 4.3.1 Product Specifications
 4.3.2 Sizes and configurations
 4.3.3 Seal coating of lining
 4.3.4 Sleeving
 4.3.5 Screw-on flanges for DI pipes
 4.3.6 Flanged joints

4.4 PVC PIPELINE SYSTEMS

4.5 PE PIPELINE SYSTEMS

4.6 STEEL PIPELINE SYSTEMS
 4.6.1 Product Specifications
 4.6.2 Sizes and configurations
 4.6.3 Joints
 4.6.4 Field welding
 4.6.5 Flanged joints

4.7 GRP PIPELINE SYSTEMS

4.8 PROTECTION AGAINST DEGRADATION
 4.8.1 Application
 4.8.2 Protection against aggressive environments
 4.8.3 Protection against damage to coatings
 4.8.4 Stainless steels
 4.8.4.1 Grade selection
 4.8.4.2 Welding
 4.8.4.3 Threaded components
 4.8.5 Cathodic protection
 4.8.6 Not used
 4.8.7 Protection against contaminated ground
 4.8.8 Bolted connections

5 GENERAL DESIGN

5.1 GENERAL REQUIREMENTS
 5.1.1 Design tolerances
 5.1.2 Levels
 5.1.3 Water main renewals—electrical safety and earthing to water services
 5.1.4 Environmental considerations
 5.1.4.1 General
 5.1.4.2 Urban salinity

5.2 RETICULATION DESIGN FOR WATER QUALITY
 5.2.1 Layout of water mains
 5.2.2 Looped mains
 5.2.3 Link mains
 5.2.4 Reduced size mains

5.3 WATER MAIN ACCESS
5.4 LOCATION OF WATER MAINS
5.4.1 General
5.4.2 Water mains in road reserves
 5.4.2.1 General
 5.4.2.2 Location in footway
 5.4.2.3 Location in carriageway
 5.4.2.4 Location in roundabouts and bus bays
5.4.3 Location in other than dedicated public road reserves
5.4.4 Water mains in easements
5.4.5 Dual water supply systems
5.4.6 Effect on vegetation
5.4.7 Water mains near trees
5.4.8 Contaminated sites
5.4.9 Crossings
 5.4.9.1 General
 5.4.9.2 Requirements for encased pipe installations
5.4.10 Railway reserves
5.4.11 Crossings of creeks or drainage reserves
5.4.12 Overhead power lines and transmission towers
5.4.13 Water mains in conjunction with landscaping and/or other development
5.4.14 Water mains on curved alignments
5.4.15 Location markers
5.4.16 Marking tape and tracer wire
 5.4.16.1 General
 5.4.16.2 Mains
 5.4.16.3 Property services

5.5 TRENCHLESS TECHNOLOGY

5.6 SHARED TRENCHING

5.7 DUPLICATE MAINS

5.8 RIDER MAINS

5.9 CONNECTION OF NEW OFF-TAKES TO EXISTING MAINS

5.10 TERMINATION POINTS
 5.10.1 Permanent ends of water mains
 5.10.2 Temporary ends of water mains
 5.10.3 Chlorination
 5.10.4 Flushing points

5.11 PROPERTY SERVICES
 5.11.1 General
 5.11.2 Connections to water mains
 5.11.3 Services, outlets and meters

5.12 OBSTRUCTIONS AND CLEARANCES
 5.12.1 General
 5.12.2 Surface obstructions
 5.12.3 Clearance from transmission towers
 5.12.4 Clearance from structures and property boundaries
 5.12.5 Underground obstructions and services
 5.12.5.1 General
 5.12.5.2 Clearance requirements
 5.12.6 Deviation of water mains
 5.12.6.1 General
 5.12.6.2 Horizontal deviation of water mains
 5.12.6.3 Vertical deviation of water mains
 5.12.6.4 Curving of pipes to avoid obstructions

5.13 DISUSED OR REDUNDANT PIPELINES
6 SYSTEM PRESSURE MANAGEMENT

6.1 GENERAL

6.2 IN-LINE PRESSURE BOOSTER PUMPING STATIONS

6.2.1 Planning criteria

6.2.2 Concept design
 6.2.2.1 General
 6.2.2.2 Life cycle considerations
 6.2.2.3 Functionality
 6.2.2.4 Due diligence requirements
 6.2.2.5 Reliability
 6.2.2.6 Maintainability
 6.2.2.7 Materials design
 6.2.2.8 Location
 6.2.2.9 Site selection
 6.2.2.10 Noise control
 6.2.2.11 Services
 6.2.2.12 Access
 6.2.2.14 Landscaping
 6.2.2.15 Security
 6.2.2.16 Signage
 6.2.2.17 Supporting systems
 6.2.2.18 Health and safety

6.2.3 Commissioning plan
 6.2.3.1 General
 6.2.3.2 Pre-commissioning
 6.2.3.3 Commissioning

6.2.4 System planning and modelling
 6.2.4.1 Modelling
 6.2.4.2 Minimum pressure affecting the area
 6.2.4.3 Number of affected properties within the low pressure zone

6.2.5 Booster design
 6.2.5.1 General
 6.2.5.2 Connection to the network
 6.2.5.3 Maximum flow and pressure requirements
 6.2.5.4 Design for minimum pressure boost conditions
 6.2.5.5 Design for minimum flow conditions
 6.2.5.6 Booster configuration design
 6.2.5.7 Booster set and pump selection
 6.2.5.8 Booster pipework and manifold design
 6.2.5.9 Booster equipment and devices
 6.2.5.10 Site specific requirements

6.2.6 Booster pipework
 6.2.6.1 General design parameters
 6.2.6.2 Manifolds, off-takes, suction and delivery pipework
 6.2.6.3 Pressure gauges and tappings

6.2.7 Pressure accumulator tank

6.2.8 Power system and supply
 6.2.8.1 General
 6.2.8.2 Security of supply
 6.2.8.3 Primary supply
 6.2.8.4 Duplicate supply
 6.2.8.5 Emergency power
 6.2.8.6 On-site generator
 6.2.8.7 Mobile generator
 6.2.8.8 Power factor correction
 6.2.8.9 Lighting
6.2.9 Control and telemetry system
 6.2.9.1 General
 6.2.9.2 Instrumentation
 6.2.9.3 System requirements
 6.2.9.4 Fire flow operation
6.2.10 Alarms and controls
 6.2.10.1 General
 6.2.10.2 Control switches – manual and emergency operation
6.2.11 Telemetry
 6.2.11.1 General
 6.2.11.2 Software
 6.2.11.3 Communications

6.3 PRESSURE REDUCING VALVE INSTALLATIONS
 6.3.1 Planning criteria
 6.3.2 Design requirements

6.4 PRESSURE SUSTAINING VALVE INSTALLATIONS
 6.4.1 Planning criteria
 6.4.2 Design requirements

7 STRUCTURAL DESIGN

7.1 GENERAL

7.2 STRUCTURAL CONSIDERATIONS

7.3 INTERNAL FORCES

7.4 EXTERNAL FORCES
 7.4.1 General
 7.4.2 Pipe cover
 7.4.3 Embedment zone dimensions
 7.4.4 Pipe embedment
 7.4.5 Buoyancy

7.5 GEOTECHNICAL CONSIDERATIONS
 7.5.1 General
 7.5.2 Water mains in engineered or controlled fill
 7.5.3 Water mains in non-engineered fill
 7.5.4 Construction of an embankment

MRWA 7.5.5 Unforeseen ground conditions

7.6 CONCRETE ENCASEMENT
 7.6.1 General
 7.6.2 Requirements
 7.6.3 Encased steel pipelines
 7.6.3.1 General
 7.6.3.2 Existing steel pipelines

7.7 WATER MAINS IN UNSTABLE GROUND
 7.7.1 General
 7.7.2 Mine subsidence areas
 7.7.3 Slip areas

7.8 ABOVE-GROUND WATER MAINS

7.9 PIPELINE ANCHORAGE
 7.9.1 General
 7.9.2 Thrust blocks
 7.9.2.1 General
 7.9.2.2 Concrete thrust blocks
 7.9.2.3 Use of puddle flanges to transfer thrust
 7.9.2.4 Timber and recycled plastics thrust blocks
7.9.3 Not used
7.9.4 Thrust and anchor blocks for dual water supply systems
7.9.5 Restraint requirements for special situations
 7.9.6.1 Above-ground mains with unrestrained flexible joints
 7.9.6.2 Buried steel mains with welded joints
 7.9.6.3 Above-ground steel mains with welded joints
 7.9.6.4 Ductile iron and steel mains with flanged joints
 7.9.6.5 PE mains

7.10 BULKHEADS AND TRENCHSTOPS
7.11 NOT USED

8 APPURTENANCES
8.1 VALVES—GENERAL
 8.1.1 Valving design
 8.1.2 Valving principles
 8.1.3 Selection considerations
 8.1.4 Not used
 8.1.5 Not used

8.2 STOP VALVES
 8.2.1 Product Specifications
 8.2.2 Installation design and selection criteria
 8.2.2.1 General
 8.2.2.2 Gate valves
 8.2.2.3 Butterfly valves
 8.2.3 Stop valves for transfer/distribution mains (>DN 300)
 MRWA 8.2.3.1 Bypass of stop valve
 8.2.4 Stop valves for reticulation mains (≤DN 300)
 MRWA 8.2.4.1 Stop valves spacing
 8.2.5 Not used
 8.2.6 Not used
 8.2.7 Stop valves—location and arrangements
 8.2.7.1 General
 8.2.7.2 Arrangement 1
 8.2.7.3 Arrangement 2
 8.2.7.4 Arrangement 3
 8.2.7.5 Arrangement 4
 8.2.7.6 Arrangement 5
 8.2.7.7 Arrangement 6
 8.2.7.8 Arrangement 7
 8.2.8 Stop valve special arrangements
 8.2.9 Rider mains and network configurations
 8.2.10 Crossing mains – interconnection
 MRWA 8.2.11 Stop valves for pumping stations
 MRWA 8.2.12 Pump station stop valve location and arrangements

8.3 CONTROL VALVES
 8.3.1 Product Specifications
 8.3.2 Automatic inlet control valves (AICV)
 8.3.3 Pressure reducing valves (PRV)
 8.3.4 Pressure relief valves (PReIV)
 8.3.5 Pump control valves
 8.3.6 Pressure sustaining valves (PSV)

8.4 AIR VALVES (AV)
 8.4.1 Product Specifications
8.4.2 Installation design criteria
8.4.3 Air valves type
8.4.4 Air valves size
8.4.5 Air valves location
8.4.6 Use of hydrants as an alternative to air valves
8.4.7 Water sampling via air valves

8.5 NON-RETURN VALVES
8.5.1 Product Specifications
8.5.2 Installation design criteria
8.5.3 Non-return valves for pumping stations

8.6 SCOURS AND PUMP-OUT BRANCHES
8.6.1 Location and arrangements
8.6.2 Design
8.6.3 Scour application
8.6.4 Scour size
8.6.5 Scour location

8.7 SWABBING POINTS

8.8 HYDRANTS
8.8.1 Product Specifications
8.8.2 Purposes
8.8.3 Hydrant operation principles
8.8.4 Hydrant types
8.8.5 Not used
8.8.6 Hydrant outlet connections
8.8.7 Hydrant size
8.8.8 Hydrant spacing
8.8.9 Hydrant location
8.8.10 Not used
8.8.11 Hydrants at ends of mains

8.9 DISINFECTION FACILITIES
8.9.1 General
8.9.2 Reticulation mains
8.9.3 Transfer and distribution mains
8.9.4 Discharge

8.10 SURFACE FITTINGS AND MARKINGS
8.10.1 Product Specifications
8.10.2 General
8.10.3 Marking of surface fittings
8.10.4 Not used

8.11 APPURtenANCE LOCATION MARKING
8.11.1 General
8.11.2 Marker posts and plates
8.11.3 Pavement markers
8.11.4 Kerb markings
9 DESIGN REVIEW AND DRAWINGS

9.1 DESIGN REVIEW

9.2 DESIGN DRAWINGS
 9.2.1 General
 9.2.2 Composition of Design Drawings
 9.2.3 Scale
 9.2.4 Contents of Design Drawings
 9.2.5 Pipeline system acronyms
 9.2.6 Water mains
 MRWA 9.2.7 Design amendments

9.3 SPECIFICATIONS

9.4 RECORDING OF WORK AS CONSTRUCTED INFORMATION

TABLES
Table 1.1 Asset Categories
Table 1.2 Typical Asset Design Lives
Table 2.1 Guide to Demand Allocation Within Dual Water Systems
Table 2.2 Typical Peak Hour Demand Work Sheet for Dual Water Supply Systems
Table 2.3 Service Pressure Limits for Drinking Water Single Supply
Table 3.1 Minimum Pipe Sizes for Particular Developments
Table 3.2 Empirical Guide for Pipe Sizing in Drinking Water Only Systems
Table 3.3 Methods for Design of Plastics Pipes and Fittings for Dynamic Stresses
Table 3.4 Temperature De-Rating Factors for Plastics Pipes Operating at Elevated Temperatures
Table MRWA 3.5 Minimum Peak Day Velocities
Table MRWA 3.6 PN Classes and Pressure Limits
Table 4.1 Colour Differentiation of Drinking Water and Non-Drinking Water Components in Dual Water Reticulation Systems
Table 5.1 Design Requirements for Reduced Sized Drinking Water Mains in Court Bowls, Cul-de-Sacs and Dead-Ends
Table 5.2 Default Easement Guidelines
Table 5.3 Not used
Table 5.4 Not used
Table 5.5 Water Main Clearances
Table 6.1 Flow Velocities
Table 7.1 PVC Pipe Material Characteristics
Table 7.2 Not used
Table 7.3 Not used
Table 7.4 Not used
Table 7.5 Not used
Table 8.1 Not used
Table 8.2 Stop Valve Spacing Criteria
Table 8.3 Maximum Water Main Drainage Times
Table 8.4 Minimum Scour Size
Table 8.5 Valve Type Water Agency Preferences
Table MRWA 8.6 MRWA Fire Hydrant Spacing Requirements

FIGURES
Figure 1.1 Typical Water Supply System
Figure 2.1(a) Single Transfer/Distribution Main, Minor Network and Dead-End Branch Mains
Figure 2.1(b) Single Transfer/Distribution Main, Network With Multiple Distribution Mains and Branch Mains With Reduced Diameter Dead-Ends
Figure 2.1(c) Twin Transfer/Distribution Mains, Network With Multiple Distribution Mains, Looped Mains and Link Mains to Minimise Dead-Ends, Some Reduced Diameter Dead-End Mains and Staging of Provision of Mains
Figure 2.2 Typical Water Supply Pumping Station Arrangements
Figure MRWA 3.1 Gravity Pressure Drawing
Figure MRWA 3.2 Pump Pressure Drawing
Figure 4.1 Flange Fastener Tightening Sequence
Figure 4.2 Not used
Figure 4.3 Not used
Figure 4.4 Not used
Figure 4.5 Not used
Figure 5.1 Looped and Link Mains
Figure 5.2 Design Requirements for Reduced Sized Mains in Court Bowls, Cul-de-Sacs and Dead-Ends
Figure 5.3 Not used
Figure 5.4 Not used
Figure 5.5 Not used
Figure 5.6 Not used
Figure 5.7 Not used
Figure 5.8 Not used
Figure 5.9 Not used
Figure 5.10 Not used
Figure 5.11 Not used
Figure 5.12 Horizontal Deviation by Deflection at Pipe Joints – Plan View
Figure 5.13 Horizontal Deflection Using a DI SOC-SOC Connector and Permitted Joint Deflections for DI Pipes and Other Applicable Pipe Types – Plan View
Figure 5.14 Horizontal Deflection Using DI Bends with DI and Other Permitted Pipe Types – Plan View
Figure 5.15 Vertical Deviation by Deflection at Pipe Joints – Section View
Figure 5.16 Not used
Figure 5.17 Not used
Figure 5.18 Vertical Deflections Using Fabricated Pipe and Flanges – Section View
Figure 5.19 Vertical Deflections Using Double Offset Fabricated Pipe and Flanges – Section View
Figure 6.1 Typical Pre-Commissioning and Commissioning Process
Figure 6.2 Typical Handover to Water Agency
Figure 7.1 Not used
Figure 7.2 Not used
Figure 7.3 Not used
Figure 7.4 Not used
Figure 7.5 Not used
Figure 7.6 Not used
Figure 7.7 Not used
Figure 7.8 Not used
Figure 7.9 Not used
Figure 7.10 Alternative End Treatment for Concrete Encased Steel Pipelines
Figure 7.11 Not used
Figure 7.12 Not used
Figure 7.13 Not used
Figure 7.14 Not used
Figure 7.15 Not used
Figure 7.16 Not used
Figure 7.17 Not used
Figure 7.18 Not used
Figure 7.19 Not used
Figure 7.20 Not used
Figure 7.21 Not used
Figure 7.22 Not used
Figure 7.23 Not used
Figure 7.24 Not used
Figure 7.25 Not used
Figure 7.26 Not used
Figure 8.1 Not used
Figure 8.2 Not used
Figure 8.3 Not used
Figure 8.4 Not used
Figure 8.5 Not used
Figure 8.6 Not used
Figure 8.7 Bypass Arrangement With L-Type Ball Hydrant
Figure 8.8 Branch Valve Adjacent to Main
Figure 8.9 Branch Valve Adjacent to Inner Splay Corner
Figure 8.10 Valve and Hydrant Combinations
Figure 8.11 Valve Adjacent to a Taper
Figure 8.12 Valves in Main Cross-Links
Figure 8.13 Valves in Conjunction With Control Valves
Figure 8.14 Two Direction Supply
Figure 8.15 Off-take Arrangement for Rider Mains
Figure 8.16 Interconnection of DN 200 and DN 225 Crossing Mains
Figure 8.17 Interconnection of Reticulation and Distribution Mains
Figure 8.18 Interconnection of Distribution Mains
Figure 8.19 Interconnection of a Continuing Reticulation Main and Larger Main
Figure 8.20 Typical Pressure Reducing Valve Installation – Sectional Elevation
Figure 8.21 Alternative Above-Ground Installation – PRV on Bypass – Side Elevation
Figure 8.22 PRV on Main Line With Bypass – Plan View
Figure 8.23 Typical Air Valve Orientation
Figure 8.24 Not used
Figure 8.25 Not used
Figure 8.26 Not used
Figure 8.27 Not used
Figure 8.28 Not used
Figure 8.29 Spring Hydrant – Typical Direct Connection
Figure 8.30 Not used
Figure 8.31 Not used
Figure 8.32 Not used
Figure 8.33 Not used
Figure 8.34 Not used
Figure 8.35 Not used
Figure 8.36 Not used
Figure 8.37 Not used
Figure 8.38 Not used
Figure 8.39 Not used
Water Supply Code of Australia

WSA 03—2011-3.1

Melbourne Retail Water Agencies Edition

(Including City West Water, South East Water & Yarra Valley Water)

Version 2.0

Part 2: Construction

Third Edition

Version 3.1
CONTENTS

10 GENERAL
 10.1 SCOPE
 10.2 INTERPRETATION

11 GENERAL CONSTRUCTION
 11.1 GENERAL
 11.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 11.3 CONTRACT INTERFACES
 11.4 CUSTOMER FOCUS
 11.4.1 General
 11.4.2 Resolution of complaints
 MRWA 11.4.3 Legislative compliance
 11.5 PROTECTION OF PROPERTY AND ENVIRONMENT
 11.5.1 Protection of other services
 11.5.2 Disused / Redundant water mains
 11.5.3 Road reserves or other thoroughfares
 11.5.3.1 Road opening permits
 11.5.3.2 Treatment of pavements and other surfaces
 11.5.3.3 Cleanliness of roads, paths, accesses and drainage paths
 11.5.3.4 Storage of products, materials and equipment
 11.5.3.5 Obstruction of street drainage
 11.5.4 Private and public properties
 11.5.5 Protection of the environment and heritage areas
 11.5.5.1 General
 11.5.5.2 Collection and disposal of wastes
 11.5.5.3 Protection of adjacent lands and vegetation
 11.5.5.4 Control of water pollution
 11.5.5.5 Contaminated soils
 11.5.5.6 Fire ant areas
 11.5.5.7 Control of noise and atmospheric pollution
 MRWA 11.5.5.8 Equipment and machinery use in bush fire prone areas
 MRWA 11.5.5.9 Work within high risk fire areas
 11.6 OPERATION OF WATER SUPPLY NETWORK
 11.7 ALTERATION OF EXISTING SERVICES
 11.8 CONNECTION TO AND WORK ON EXISTING ASBESTOS WATER MAINS
 11.9 UNDER PRESSURE CUT-IN CONNECTION EQUIPMENT
 11.10 SURVEY MARKS
 11.11 NOT USED
 11.12 LATENT CONDITIONS

12 PRODUCTS AND MATERIALS
 12.1 AUTHORISED PRODUCTS AND MATERIALS
 12.1.1 General
 12.2 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
 12.3 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
 12.3.1 General
 12.3.2 Transportation
 12.3.3 Unloading and handling
 12.3.4 On-site storage
 MRWA 12.3.5 Coiled PE pipe
 12.4 REJECTED PRODUCTS AND MATERIALS
 12.5 CONCRETE WORKS
 12.6 SUPPLY OF WATER TO THE WORKS
 12.7 SUPPLY OF WATER TO EXISTING PROPERTIES
 12.8 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥DN 80
12.8.1 Flanged off-takes
12.8.2 Valves
12.8.3 Flange holes
12.8.4 Gaskets
12.8.5 Bolting system
 12.8.5.1 General
 12.8.5.2 Carbon or alloy steel bolt assemblies
 12.8.5.3 Stainless steel bolt assemblies
12.8.6 Insulation sleeves
12.8.7 Plastics inserts for metallic pipes

13 EXCAVATION
13.1 PRECAUTIONS
13.2 LIMITS OF CLEARING AND EXCAVATION
13.3 PROTECTION OF TREES
 13.3.1 General precautions
 13.3.2 Protection of roots
13.4 BLASTING
13.5 SUPPORT OF EXCAVATIONS
13.6 DRAINAGE AND DEWATERING
13.7 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥DN 80
 13.7.1 Excavation requirements
 13.7.2 Extent of excavation
13.8 EXCAVATION ACROSS IMPROVED SURFACES
13.9 TRENCH EXCAVATION
 13.9.1 General
 13.9.2 Construction of embankment
 13.9.3 Clearances for on-site works
13.10 REFILL OF EXCESSIVE EXCAVATION
13.11 FOUNDATIONS AND FOUNDATION STABILISATION
13.12 SURPLUS EXCAVATED MATERIAL
13.13 TRENCHLESS EXCAVATION

14 BEDDING FOR PIPES
14.1 TRENCH FLOOR PREPARATION
14.2 BEDDING AND PIPE SUPPORT
14.3 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS

15 PIPE LAYING, JOINTING AND CONNECTING
15.1 INSTALLATION OF PIPES
 15.1.1 General
 15.1.2 Dual water supply areas
 15.1.3 Cleaning, inspection and joint preparation
 15.1.4 Laying
 15.1.5 Mains renewals
15.2 HORIZONTAL AND VERTICAL DEFLECTIONS OF PIPES
 15.2.1 General
 15.2.2 Deflection at a pipe joint
 15.2.3 Curving of PE pipe
15.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
15.4 VALVES, HYDRANTS AND OTHER APPURTENANCES
15.5 UNDER PRESSURE CUT-IN CONNECTION TO PRESSURE PIPES ≥DN 80
 15.5.1 Inspection of host pipe
 15.5.2 Inspection of valve to be installed
 15.5.3 Disinfection of fittings and equipment
 15.5.4 Installation of flanged off-take clamp (non steel mains)
 MRWA 15.5.4.1 Installation of flanges to steel mains
 15.5.5 Installation of the valve
15.5.6 Equipment operation and cut-in operation
15.5.7 Recording and reporting

15.6 FLOTATION CONTROL

15.7 THRUST, ANCHOR BLOCKS AND RESTRAINED JOINTS

15.8 TAPPING OF MAINS, PROPERTY SERVICES AND WATER METERS

15.9 TRENCH STOPS

15.10 BULKHEADS

15.11 CORROSION PROTECTION OF DUCTILE IRON

15.12 MARKING TAPES
 15.12.1 Not used
 15.12.2 Detectable marking tape
 15.12.3 Tracer wire

MRWA 15.12.4 Property services

15.13 VALVES, HYDRANTS AND SURFACE BOXES AND FITTINGS
 15.13.1 Installation
 15.13.2 Valve chambers for large diameter mains

15.14 SCOURS

15.15 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
 MRWA 15.15.1 Grouting of the annulus

15.16 AQUEDUCTS

15.17 BRIDGE CROSSINGS

15.18 APPURTENANCE LOCATION MARKING

15.19 FLANGED JOINTS

15.20 WELDING OF STEEL PIPELINES
 15.20.1 General
 MRWA 15.20.1.1 Steel pipeline welder qualification
 MRWA 15.20.1.2 Weld quality assurance and testing
 15.20.2 Field welding of flanges
 15.20.3 Reinstatement of cement mortar lining
 15.20.4 Reinstatement using a tape system
 15.20.4.1 Surface preparation
 15.20.4.2 Priming surfaces
 15.20.4.3 Mastic filler
 15.20.4.4 Tape application
 MRWA 15.20.4.5 Overwrap application
 15.20.5 Reinstatement of external corrosion protection at joints using a heat-shrinkable sleeve system
 15.20.5.1 Surface preparation
 15.20.5.2 Preheat pipe
 15.20.5.3 Priming of surfaces
 15.20.5.4 Mastic filler
 15.20.5.5 Heat-shrinkable sleeve preparation
 15.20.5.6 Heat-shrinkable sleeve application
 MRWA 15.20.6 Coating testing
 MRWA 15.20.7 Ultra High Build Epoxy Repairs
 MRWA 15.20.8 Corrosion protection
 MRWA 15.20.9 Cathodic protection
 MRWA 15.20.10 Fabricated steel fittings

15.21 WELDING OF PE PIPELINES
 MRWA 15.21.1 General
 MRWA 15.21.2 Butt welding
 MRWA 15.21.3 Electrofusion welding
 MRWA 15.21.4 Extrusion welding

16 PIPE EMBEDMENT AND SUPPORT

16.1 GENERAL

16.2 EMBEDMENT MATERIALS

16.3 COMPACTION OF EMBEDMENT
16.3.1 Methods
16.4 SPECIAL BEDDING AND EMBEDMENTS / GEOTEXTILE SURROUND AND PILLOW
16.5 REMOVAL OF TRENCH SUPPORTS
16.6 CONCRETE EMBEDMENT AND ENCASEMENT

17 FILL
17.1 TRENCH FILL (BACKFILL)
 17.1.1 Material requirements
 17.1.1.1 Trafficable Areas
 17.1.1.2 Non-Trafficable Areas
 17.1.2 Placement
 17.1.3 Compaction of trench fill
17.2 EMBANKMENT FILL
17.3 TRENCHLESS EXCAVATION FILL

18 SWABBING
18.1 GENERAL
18.2 SWABS
18.3 SWABBING AND FLUSHING PROCEDURE

19 ACCEPTANCE TESTING
19.1 GENERAL
19.2 VISUAL INSPECTION
19.3 COMPACTION TESTING
 19.3.1 General
 19.3.2 Compaction testing requirements
 19.3.2.1 General
 19.3.2.2 Not used
 19.3.2.3 Not used
 19.3.2.4 Not used
 19.3.2.5 Retesting
 19.4 HYDROSTATIC PRESSURE TESTING
 19.4.1 General
 MRWA 19.4.1.1 PE pipeline testing
 MRWA 19.4.1.2 Test equipment
 19.4.2 Mains
 19.4.3 Property services
 19.4.4 Under pressure cut-in connections
 19.5 BLOCK TESTING DUAL WATER SUPPLY SYSTEMS FOR CONNECTIVITY
 19.6 INSULATED JOINT RESISTANCE TEST
 19.7 WATER QUALITY TESTING
 19.7.1 General
 19.7.2 Test procedure
 19.7.3 Satisfactory water quality test
 19.7.4 Failure of test

20 DISINFECTION
20.1 APPLICATION
20.2 FLUSHING OF DISINFECTION WATER

21 TOLERANCES ON AS-CONSTRUCTED WORK
21.1 GENERAL
21.2 HORIZONTAL TOLERANCES
 21.2.1 Water mains and in-line structures
 21.2.2 Property services and meters
21.3 VERTICAL TOLERANCES
 21.3.1 Water mains, property connections and structures
 21.3.2 Verticality ("plumb")
21.4 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS
21.5 CAST IN-SITU CONCRETE STRUCTURES AND SLABS

22 CONNECTIONS TO EXISTING WATER MAINS
22.1 GENERAL
22.2 UNDER PRESSURE CONNECTIONS
22.3 INSERTED TEE CONNECTIONS
 22.3.1 Shutdown of existing water mains
 22.3.2 Making the connection to existing water main
 22.3.3 Re-charging the shutdown water main
22.4 NOT USED
22.5 RECONNECTION OF PROPERTIES SUPPLIED BY TEMPORARY PRIVATE SERVICES

23 RESTORATION
23.1 GENERAL
23.2 PAVEMENTS
23.3 LAWNS
23.4 GRASSED AREAS
23.5 BUSHLAND
23.6 PROVISION FOR AND RECTIFICATION OF SETTLEMENT
23.7 MAINTENANCE OF RESTORED SURFACES

24 WORK AS CONSTRUCTED DETAILS

TABLES
Table 18.1 Not used
Table 19.1 Minimum Compaction of Embedment, Trench Fill and Embankments
Table 19.2 MRWA Hydrostatic Pressure Testing

FIGURES
Figure 13.1 Not used
Figure 15.1 Not used
Figure 15.2 Not used
Figure 15.3 Not used
Figure 15.4 Not used