$\langle \langle \langle \rangle$

WATER SERVICES ASSOCIATION OF AUSTRALIA

Water Supply Code of Australia Hunter Water Corporation Version 1.0

WSA 03-2002

>>

Water Supply Code of Australia

WSA 03-2002-2.3

Hunter Water Edition

Version 1

Previous edition WSA 03: 1999

PREFACE	6
INTRODUCTION	9
PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS	
I Glossary of Terms	14
II Abbreviations	25
III Referenced Documents	28
IV Other References	32
PART 1: PLANNING AND DESIGN	
Contents	36
1 General	42
2 System Planning	56
3 Hydraulic Design	71
4 General Design	80
5 Structural Design	100
6 Appurtenances	113
7 Design Review and Drawings	133
PART 2: PRODUCTS AND MATERIALS	
Contents	138
8 Products and Materials Overview	140
Appendix A Quality Assurance of Products and Materials	151
PART 3: CONSTRUCTION	
Contents	158
9 General	162
10 Quality – Not used	163
11 General Construction – Not used	164
12 Products and Materials	165
13 Excavation	166
14 Bedding for Pipes	169
15 Pipe Laying and Jointing	170
16 Pipe Embedment and Support	173
17 Fill	174
18 Swabbing	176
19 Acceptance Testing	178
20 Disinfection – Not used	180

21 Tolerances on As-Constructed Work	181
22 Connections to Existing Water Mains	182
23 Restoration	183
24 Work As Constructed Details – Not used	185
PART 4: STANDARD DRAWINGS	
Contents	188
25 Introduction	190
26 Listing of Standard Drawings	192
27 Commentary on WAT-1100 Series Drawings	195
28 Commentary on WAT-1200 Series Drawings	199
29 Commentary on WAT-1300 Series Drawings	204
30 Commentary on WAT-1400 Series Drawings	207
STANDARD DRAWINGS	210
WAT-1100 Series Drawings – Pipeline Layout	
WAT-1200 Series Drawings – Embedment, Trench Fill And Restraints	
WAT-1300 Series Drawings – Installation Practices And Structures	

4

WAT-1400 Series Drawings – Fabrication Details

HUNTER WATER APPENDICES

HW1 Environmental (Considerations
---------------------	----------------

- HW2 Water Mains in Slip and Potentially Unstable Areas
- HW3A Drawing Requirements
- HW3B Work As Constructed Drawings
- HW4 Under Pressure Cut-In Connections
- HW5 Telemetry Signal Requirements

>>

Water Supply Code of Australia

WSA 03-2002-2.3

Hunter Water Edition

Version 1

Part 1: Planning and Design

1 GENERAL

1.1 SCOPE

1.2 PLANNING AND DESIGN OBJECTIVES

- 1.2.1 Overview
- 1.2.2 Design life
- 1.2.3 Design requirements
- 1.2.4 Terrorism
- HW 1.2.5 Safety in design
- HW 1.2.6 HW Instrumentation and control systems

1.3 PLANNING OUTPUT

1.4 DESIGN OUTPUT

1.5 DESIGN RESPONSIBILITIES

- 1.5.1 General
- 1.5.2 Water Agency
- 1.5.3 The Designer

1.6 CONSULTATION WITH OTHER PARTIES

HW 1.7 SERVICING STRATEGIES

- HW 1.7.1 Regional Servicing Strategies
- HW 1.7.2 Local Servicing Strategies
- HW 1.7.3 Servicing Strategies Security of supply
- HW 1.7.4 Validity of strategies and designs
- HW 1.8 CONCEPT PLAN
- HW 1.9 DETAIL DESIGN

2 SYSTEM PLANNING

2.1 SYSTEM PLANNING PROCESS

- 2.1.1 Extending / upgrading an existing water supply system
- 2.1.2 Providing a new water supply

2.2 DEMANDS

- 2.2.1 General
- 2.2.2 Assessment of demand—Forecast of future demand 2.2.2.1 General
 - 2.2.2.2 Residential
 - 2.2.2.3 Non-residential

HW 2.2.2.4 Unaccounted water

HW 2.2.3 Demands categories

- HW 2.2.3.1 Average day demand
- HW 2.2.3.2 Peak day demand
- HW 2.2.3.3 Extreme day demand
- HW 2.2.3.4 Peak and extreme week demands
- HW 2.2.3.5 Diurnal demand
- HW 2.2.3.6 95th percentile peak day demand
- HW 2.2.3.7 Fire fighting

2.3 SYSTEM CONFIGURATION

2.4 SYSTEM HYDRAULICS

- 2.4.1 General
- 2.4.2 Network analysis
- 2.4.3 Operating pressures
 - 2.4.3.1 Service pressure

2.4.3.2 Maximum allowable service pressure2.4.3.3 Minimum allowable service pressureHW 2.4.3.4 Average service pressure2.4.4 Pressure variation analysis

2.4.5 Determining supply zones

2.5 WATER QUALITY

- 2.5.1 General
- 2.5.2 Prevention of back siphonage
- 2.5.3 Water age
- 2.5.4 Disinfection

2.6 PUMPING STATIONS

- 2.7 SERVICE RESERVOIRS
- 2.8 FUTURE SYSTEM EXPANSION
- 2.9 SYSTEM REVIEW
- 2.10 CONCEPT PLAN

3 HYDRAULIC DESIGN

3.1 DESIGN INPUTS AND OUTPUTS

- 3.2 SIZING OF MAINS
 - 3.2.1 General
 - 3.2.2 Minimum pipe sizes
 - 3.2.3 Empirical sizing of reticulation mains
 - 3.2.4 Fire flows
 - 3.2.5 Sizing by analysis
 - 3.2.5.1 General
 - 3.2.5.2 Head losses
 - 3.2.5.3 Hydraulic roughness values
 - 3.2.5.4 Flow velocities
- 3.3 PRESSURE DESIGNATIONS

3.4 DESIGN PRESSURES

3.4.1 General

3.4.2 Maximum design pressure

HW 3.4.3 Minimum design pressure

3.5 DESIGN FOR SURGE AND FATIGUE

- 3.5.1 General
- 3.5.2 Surge
- 3.5.3 Fatigue

HW 3.5.3.1 Fatigue design for thermoplastic pipes HW 3.5.3.2 Fatigue design for thermoplastic fittings HW 3.5.3.3 Metallic pipes and fittings

3.6 TEMPERATURE DE-RATING OF PLASTIC PIPES AND FITTINGS

3.7 PIPE AND FITTINGS PRESSURE CLASS

- 3.7.1 Maximum allowable operating pressure (MAOP)
 - 3.7.1.1 Thermoplastic pipes and fittings MAOP
 - 3.7.1.2 Ductile iron pipes and fittings MAOP
- 3.7.2 Minimum pressure class

HW 3.7.3 Maximum cyclic pressure range – Thermoplastic pipes and fittings

3.8 PIPELINE MATERIALS

4 GENERAL DESIGN

4.1 GENERAL REQUIREMENTS

- 4.1.1 Design tolerances and Survey Control HW 4.1.1.1 Survey Control
- 4.1.2 Levels
- 4.1.3 Water main renewals—electrical earthing to water services
- 4.1.4 Environmental considerations
 - 4.1.4.1 General

4.1.4.2 Urban salinity

HW 4.1.4.3 Potentially unstable areas

4.2 WATER MAIN ACCESS

4.3 LOCATION OF WATER MAINS

- 4.3.1 General
- 4.3.2 Water mains in road reserves
- 4.3.3 Water mains in easements
- 4.3.4 Effect on vegetation
- 4.3.5 Water mains near trees
- 4.3.6 Contaminated sites
- 4.3.7 Crossings
- 4.3.8 Mechanical protection of water mains
- 4.3.9 Railway reserves
- 4.3.10 Crossings of creeks or drainage reserves
- 4.3.11 Overhead power lines and transmission towers

HW 4.3.12 Water mains in conjunction with landscaping and/or other development

4.4 SHARED TRENCHING

4.5 DUPLICATE MAINS

4.6 RIDER MAINS

4.7 CONNECTION OF NEW MAINS TO EXISTING MAINS

4.8 TERMINATION POINTS

- 4.8.1 Layout of water mains
 - HW 4.8.1.1 Looped main
 - HW 4.8.1.2 Link main
 - HW 4.8.1.3 Reduced size main
- 4.8.2 Permanent ends of water mains
- 4.8.3 Temporary ends of water mains

4.9 PROPERTY SERVICES

- 4.10 OBSTRUCTIONS AND CLEARANCES
 - 4.10.1 General
 - 4.10.2 Surface obstructions
 - 4.10.3 Clearance from transmission towers
 - 4.10.4 Clearance from structures
 - 4.10.5 Underground obstructions and services
 - 4.10.5.1 General
 - 4.10.5.2 Clearance requirements
 - 4.10.6 Crossing services
 - 4.10.7 Deviation of mains around structures

4.11 DISUSED OR REDUNDANT PIPELINES

4.12 CORROSION PROTECTION

- 4.12.1 Application
- 4.12.2 Corrosion protection against aggressive environments
- 4.12.3 Cathodic protection
- 4.12.4 Stray current corrosion
- 4.12.5 Protection against contaminated ground

4.13 STEEL WATER MAINS

4.13.1 Sizes and configurations

4.13.2 Joints

4.13.3 Field welding

4.13.4 Flanged joints

5 STRUCTURAL DESIGN

5.1 GENERAL

5.2 STRUCTURAL CONSIDERATIONS

5.3 INTERNAL FORCES

5.4 EXTERNAL FORCES

- 5.4.1 General
- 5.4.2 Pipe cover
- 5.4.3 Trench width
- 5.4.4 Pipe embedment

HW 5.4.5 Pipe protection / Concrete encasement

5.5 GEOTECHNICAL CONSIDERATIONS

- 5.5.1 General
- 5.5.2 Water mains in engineered or controlled fill
- 5.5.3 Water mains in non-engineered fill
- 5.5.4 Mine subsidence
- 5.5.5 Filling along route of main
- 5.5.6 Unstable areas

5.6 PIPE MATERIALS

HW 5.6.1 Screw-on flanges

5.7 ABOVE-GROUND WATER MAINS

5.8 TRENCHLESS TECHNOLOGY

5.9 PIPE ANCHORAGE

- 5.9.1 General
- 5.9.2 Thrust blocks
- 5.9.3 Anchor blocks
- 5.9.4 Restrained elastomeric seal joint water mains
- 5.9.5 Restraint requirements for special situations
 - 5.9.5.1 Above ground water mains with unrestrained flexible joints
 - 5.9.5.2 Steel mains with welded joints, buried
 - 5.9.5.3 Steel mains with welded joints, above ground
 - 5.9.5.4 Ductile iron or steel mains with flanged joints
- 5.10 BULKHEADS AND TRENCHSTOPS

5.11 UNFORESEEN GROUND CONDITIONS

HW 5.12 TRENCH DRAINAGE

6 APPURTENANCES

- 6.1 VALVES—GENERAL
 - 6.1.1 Valves design
 - 6.1.2 Siting principles
 - 6.1.3 Selection considerations
 - 6.1.4 Installation

6.2 STOP VALVES

- 6.2.1 Installation design and selection criteria
 - 6.2.1.1 General
 - 6.2.1.2 Gate valves
 - 6.2.1.3 Butterfly valves
- 6.2.2 Stop valves for transfer/distribution mains

- 6.2.3 Stop valves for reticulation mains
- 6.2.4 Bypass of stop valve
- 6.2.5 Stop valves—location and arrangements
 - 6.2.5.1 General
 - 6.2.5.2 Arrangement 1
 - 6.2.5.3 Arrangement 2
 - 6.2.5.4 Arrangement 3
 - 6.2.5.5 Arrangement 4
 - 6.2.5.6 Arrangement 5
 - 6.2.5.7 Arrangement 6
 - 6.2.5.8 Arrangement 7

6.2.6 Stop valve special arrangements

HW 6.2.7 Crossing mains – interconnection

6.3 CONTROL VALVES

- 6.3.1 Automatic inlet control valves (AICV)
- 6.3.2 Pressure reducing valves (PRV)

HW 6.3.2.1 PRV installation requirements for Hunter Water

- 6.3.3 Pressure relief valves (PReIV)
- 6.3.4 Pump control valves
- 6.3.5 Pressure sustaining valves (PSV)

6.4 AIR VALVES (AV)

- 6.4.1 Installation design criteria
- 6.4.2 Air valves type
- 6.4.3 Air valves size
- 6.4.4 Air valves location

6.5 REFLUX VALVES

6.6 SCOURS AND PUMP-OUT BRANCHES

- 6.6.1 Location and arrangements
- 6.6.2 Design
- 6.6.3 Scours application
- 6.6.4 Scours size
- 6.6.5 Scours location

6.7 SWABBING POINTS

6.8 HYDRANTS

- 6.8.1 Purposes
- 6.8.2 Siting principles
- 6.8.3 Hydrant types
- 6.8.4 Hydrant installation
- 6.8.5 Hydrant outlet connections
- 6.8.6 Hydrant size
- 6.8.7 Hydrant spacing
- 6.8.8 Hydrant location
- 6.8.9 Hydrants for reticulation system operational requirements
- 6.8.10 Hydrants at ends of mains

7 DESIGN REVIEW AND DRAWINGS

- 7.1 DESIGN REVIEW
- 7.2 DESIGN DRAWINGS
 - 7.2.1 General
 - 7.2.2 Composition of Design Drawings
 - 7.2.3 Scale
 - 7.2.4 Contents of Design Drawings
 - HW 7.2.5 Pipe acronyms
 - HW 7.2.6 Water mains >DN 375

7.3 RECORDING OF WORK AS CONSTRUCTED INFORMATION

TABLES

TABLE 1.1	TYPICAL ASSET DESIGN LIVES
TABLE HW 2.1	WATER SUPPLY DESIGN DEMANDS
TABLE HW 2.2	DIURNAL DEMAND FACTORS
TABLE HW 2.3	PEAK AND EXTREME WEEK DEMAND FACTORS
TABLE HW 2.4	SERVICE PRESSURE (SP) LIMITS
TABLE HW 3.0	MINIMUM PIPE SIZES
TABLE 3.1	EMPIRICAL GUIDE FOR PIPE SIZING
TABLE 3.2	FATIGUE DE-RATING FACTORS FOR THERMOPLASTIC PIPES
TABLE 4.1	CLEARANCES BETWEEN WATER MAINS AND UNDERGROUND
	SERVICES
TABLE HW 5.0	TYPICAL PIPE MATERIAL CHARACTERISTICS
TABLE 5.1	REQUIREMENTS FOR BULKHEADS
TABLE HW 5.2	STANDARD BEDDING APPLICATIONS
TABLE 6.1	STOP VALVE SPACING CRITERIA
TABLE 6.2	MAXIMUM WATER MAIN DRAINAGE TIMES
TABLE 6.3	MINIMUM SCOUR SIZE
TABLE 6.4	MAXIMUM HYDRANT SPACINGS
FIGURES	
FIGURE 1.1	TYPICAL WATER SUPPLY SYSTEM
FIGURE 1.2	WATER SUPPLY PLANNING AND DESIGN REQUIREMENTS
FIGURE 2.1 (a)	SINGLE TRANSFER/DISTRIBUTION MAIN, MINOR NETWORK AND
	DEAD END BRANCH MAINS
FIGURE 2.1 (b)	SINGLE TRANSFER/DISTRIBUTION MAIN, NETWORK WITH
	MULTIPLE DISTRIBUTION MAINS AND BRANCH MAINS WITH
	REDUCED DIAMETER DEAD ENDS
FIGURE 2.1 (c)	TWIN TRANSFER/DISTRIBUTION MAINS, NETWORK WITH
	MULTIPLE DISTRIBUTION MAINS, LOOPED MAINS AND LINK
	MAINS TO MINIMISE DEAD ENDS, SOME REDUCED DIAMETER
	DEAD END MAINS AND STAGING OF PROVISION OF MAINS
FIGURE 3.1	SYSTEM PRESSURE/COMPONENT PRESSURE RELATIONSHIP
FIGURE 3.2	CONCEPTUAL HYDRAULIC OPERATION OF A GRAVITY MAIN
FIGURE 3.3	TYPICAL SURGE WAVE
FIGURE HW 3.4	TYPICAL FATIGUE CYCLE
FIGURE 4.1	TYPICAL SHARED TRENCHING ARRANGEMENT
FIGURE 4.2	ELIMINATION OF TERMINATION POINTS
FIGURE 4.3	LOOPED AND LINK MAINS
FIGURE 4.4 (a)	DEFLECTION AT JOINTS
FIGURE 4.4 (b)	DEFLECTION USING SOC-SOC BENDS
FIGURE 4.4 (c)	DEFLECTION USING SOC-SOC CONNECTORS
FIGURE 6.1	BRANCH VALVE ADJACENT TO MAIN
FIGURE 6.2	BRANCH VALVE ADJACENT TO INNER SPLAY CORNER
FIGURE 6.3	VALVE AND HYDRANT COMBINATIONS
FIGURE 6.4	VALVE ADJACENT TO A TAPER
FIGURE 6.5	VALVES IN MAIN CROSS CONNECTIONS
FIGURE 6.6	VALVES IN CONJUNCTION WITH CONTROL VALVES
FIGURE 6.7	TWO DIRECTION SUPPLY
FIGURE 6.8	TYPICAL AIR VALVE ORIENTATION
FIGURE 6.9	SPRING HYDRANT - TYPICAL DIRECT CONNECTION
FIGURE 6.10	ISOLATING VALVE ASSEMBLY WITH SPRING HYDRANT
FIGURE HW 6.11	INTERCONNECTION OF CROSSING MAINS

>>>

Water Supply Code of Australia WSA 03—2002-2.3

Hunter Water Edition Version 1

Part 2: Products and Materials

8 PRODUCTS AND MATERIALS OVERVIEW

- 8.1 Purpose
- 8.2 Scope
- 8.3 Responsibilities
 - 8.3.1 Water Agency
 - 8.3.2 Designer
 - 8.3.3 Constructor
 - 8.3.4 Purchaser
- 8.4 Product Standards and Specifications
 - 8.4.1 Product standards
 - 8.4.2 Product Specifications
 - 8.4.3 Product Specifications—Alternatives
- 8.5 Quality Assurance
 - 8.5.1 Default requirement
 - 8.5.2 Additional information on quality assurance
 - 8.5.3 Innovative products

8.6 SELECTION GUIDE FOR PIPELINE SYSTEMS

8.7 ADDITIONAL PRODUCT AND MATERIAL INFORMATION

APPENDIX A

- A1 GENERAL
- A2 QUALITY ASSURANCE OPTIONS
 - A2.1 ISO 9000 quality management system certification
 - A2.2 Product certification
 - A2.2.1 Product certification Type 1
 - A2.2.2 Product certification Type 3
 - A2.2.3 Product certification Type 5
 - A2.3 Supplier's declaration of conformance
 - A2.4 Second party verification
- A3 FACTORS INFLUENCING SELECTION OF QUALITY ASSURANCE OPTIONS
 - A3.1 General factors
 - A3.2 Likelihood of manufacturing non-conformance
 - A3.3 Likelihood of failure of pipeline system from a product non-conformance
 - A3.4 Consequences of failure
 - A3.5 Product specification
 - A3.6 Project magnitude / management
 - A3.7 Innovative products

A4 SELECTING THE QUALITY ASSURANCE OPTION

- A4.1 General factors
- A4.2 Product certification
 - A4.2.1 General
 - A4.2.2 Type 1
 - A4.2.3 Type 3
 - A4.2.4 Type 5
- A4.3 ISO 9000 quality management system certification
- A4.4 Supplier's declaration of conformance
- A4.5 Second party verification

TABLES

- TABLE 8.1 PRINCIPAL WATER PIPELINE SYSTEMS STANDARD SIZES, TYPICAL PIPE CLASSES AND JOINTING METHODS
- TABLE 8.2 PRINCIPAL WATER PIPELINE SYSTEMS PRECAUTIONS, LIMITATIONS ADVANTAGES AND DISADVANTAGES

139

 \sim >>

Water Supply Code of Australia WSA 03-2002-2.3

Hunter Water Edition Version 1

Part 3: Construction

9 GENERAL 9.1 Scope 9.2 Interpretation **10 NOT USED** 10.1 NOT USED 10.1.1 Not used 10.1.2 Not used 10.1.3 Not used 10.1.4 Not used 10.1.5 Not used 10.1.6 Not used 10.1.7 Not used 10.1.8 Not used 10.1.9 Not used 10.2 Not used **11 NOT USED** 11.1 Not used 11.2 Not used 11.3 Not used 11.4 Not used 11.4.1 Not used 11.4.2 Not used 11.5 Not used 11.5.1 Not used 11.5.2 Not used 11.5.3 Not used 11.5.4 Not used 11.5.4.1 Not used 11.5.4.2 Not used 11.5.4.3 Not used 11.5.4.4 Not used 11.5.4.5 Not used 11.5.5 Not used 11.5.6 Not used 11.5.6.1 Not used 11.5.6.2 Not used 11.5.6.3 Not used 11.5.6.4 Not used 11.5.6.5 Not used 11.5.6.6 Not used 11.6 Not used 11.7 Not used 11.8 Not used 11.9 Not used 11.10 Not used **12 PRODUCTS AND MATERIALS**

12.1 Authorised products and materials12.2 Not used12.3 Not used12.4 Not used12.5 Concrete works

12.5.1 General 12.5.2 Not used 12.5.3 Not used

12.5.4 Not used

12.5.5 Not used

12.5.5.1 Not used

12.5.5.2 Not used

12.5.6 Not used

12.5.7 Not used

12.5.8 Not used

12.5.9 Not used

12.5.10 Not used

12.6 NOT USED

12.7 NOT USED

13 EXCAVATION

13.1 EXISTING SERVICES

HW 13.1.1 Location of services

HW 13.1.2 Protection and maintenance of services

HW 13.1.3 Repair of services

HW 13.1.4 Disused water mains

13.2 Limits of excavation

13.3 Excavation across improved surfaces

13.4 Excavation in root zones

13.5 Blasting

13.6 Support of excavations

13.7 Drainage and dewatering

13.8 Foundations and foundation stabilisation

13.9 Surplus excavated material

14 BEDDING FOR PIPES

14.1 NOT USED

14.2 Bedding materials

14.3 Placement of bedding

14.4 NOT USED

15 PIPE LAYING AND JOINTING

15.1 Installation of pipes

15.1.1 General

15.1.2 Cleaning, inspection and joint preparation

- 15.1.3 Polyethylene
- 15.1.4 Laying
- 15.2 Horizontal and vertical deflections of pipes
 - 15.2.1 Not used
 - 15.2.2 Not used

15.2.3 Bending pipe

15.3 NOT USED

15.4 Flotation control

15.5 Thrust and anchor blocks and restrained joints

15.6 Property services and water meters

15.7 Not used

- 15.8 Not used
- 15.9 Corrosion protection of cast iron
- 15.10 Marking tapes

15.10.1 Not used

- 15.10.2 Detectable marking tape
- 15.11 Valves, hydrants and surface fittings
 - 15.11.1 Installation

15.11.2 Not used

- 15.12 Not used
- 15.13 Bored pipes under roads, driveways and elsewhere

15.14 Not used

15.15 Not used

15.16 Location markers

- 15.17 Flanged joints
- 15.18 Welding of steel water mains
 - 15.18.1 General
 - 15.18.2 Field welding of flanges

16 PIPE EMBEDMENT AND SUPPORT

16.1 General
16.2 Embedment materials
16.3 Compaction of embedment
16.3.1 Methods
16.3.2 Not used
16.3.2.1 Not used
16.3.2.2 Not used
16.3.2.3 Not used
16.3.3 Not used
16.4 Not used
16.5 NOT USED
16.6 Concrete embedment and encasement

17 FILL

17.1 Trench fill
17.1.1 Placement
17.1.2 Material requirements
17.1.3 Compaction of trench fill
17.2 Embankment fill
17.3 NOT USED
HW 17.4 PROVISION FOR SETTLEMENT

18 FLUSHING AND SWABBING

- 18.1 General 18.2 Swabs
- 18.3 Swabbing procedure

19 ACCEPTANCE TESTING

19.1 NOT USED 19.2 NOT USED **19.3 NOT USED** 19.3.1 Not used 19.3.2 Not used 19.3.3 Not used 19.3.3.1 Not used 19.3.3.2 Not used 19.3.3.3 Not used 19.3.4 Not used 19.3.4.1 Not used 19.3.4.2 Not used 19.3.4.3 Not used 19.3.4.4 Not used 19.3.4.5 Not used 19.3.5 Not used 19.3.5.1 Not used 19.3.5.2 Not used 19.3.5.3 Not used 19.3.5.4 Not used 19.3.5.5 Not used 19.4 Pressure testing 19.4.1 General

19.4.2 System test pressure

19.4.3 Not used

19.4.4 Not used

19.4.5 Satisfactory pressure test

19.5 NOT USED

- 19.5.1 Not used
- 19.5.2 Not used
- 19.5.3 Not used
- 19.5.4 Not used

20 NOT USED

- 20.1 NOT USED
- 20.2 NOT USED

21 TOLERANCES ON AS-CONSTRUCTED WORK

- 21.1 NOT USED
- 21.2 Horizontal tolerances
 - 21.2.1 Water mains and in-line structures
 - 21.2.2 Property services and meters
- 21.3 Vertical tolerances
 - 21.3.1 Water mains, property connections and structures
 - 21.3.2 Verticality ("plumb")
- 21.4 Tolerances on finished surface structures and fittings
- 21.5 Cast in-situ concrete structures and slabs

22 CONNECTIONS TO EXISTING WATER MAINS

22.1 General 22.2 NOT USED 22.3 NOT USED 22.4 NOT USED

23 RESTORATION

- 23.1 General
- 23.2 Pavements
- 23.3 Lawns
- 23.4 Grassed areas
- 23.5 Bushland
- 23.6 Not used
- 23.7 Maintenance of restored surfaces

24 NOT USED

TABLES

TABLE HW 14.1 MAXIMUM PARTICLE SIZETABLE HW 16.1 MINIMUM COMPACTION OF EMBEDMENTTABLE HW 17.1 MINIMUM COMPACTION OF TRENCH FILLTABLE 18.1DIMENSIONS OF SWABS AND DISCHARGE UNITS

 \sim >>

Water Supply Code of Australia WSA 03-2002-2.3

Hunter Water Edition Version 1

Part 4: Standard Drawings

188

25 INTRODUCTION

25.1 General

25.2 Drawing Commentary

HW 25.3 Varied Standard Drawings

HW 25.4 Supplementary (Additional) Drawings

HW 25.5 Hunter Water Reference Drawings (Superseded Standard Construction Practice Series)

26 LISTING OF STANDARD DRAWINGS

27 COMMENTARY On WAT-1100 SERIES - PIPELINE layout

```
27.1 General
```

27.2 WAT-1100 and WAT-1101 - Design layouts 27.2.1 WAT-1100 - Typical locality plan 27.2.2 WAT-1101 - Typical site plan 27.3 WAT-1102-V, WAT-1103-V, WAT-1104-V AND WAT-1105-V - Typical mains construction 27.3.1 WAT-1102-V - Reticulation main arrangements 27.3.2 WAT-1103-V - Distribution and transfer mains 27.3.3 WAT-1104-V - DN 63 PE cul-de-sac arrangement 27.3.4 WAT-1105-V - Connection to existing mains 27.4 WAT-1106-V and WAT-1107-V - Property services - Main-to-meter 27.5 WAT-1108-V - Property services - Connection to main 27.6 WAT-1109-V - Property services - Above ground meter assembly arrangement HW 27.7 WAT-1150-H - Water Main Symbols HW 27.8 WAT-1151-H AND WAT-1152-H - Design Layouts HW 27.8.1 WAT-1151-H - Typical locality plan HW 27.8.2 WAT-1152-H - Typical site plan HW 27.9 WAT-1153-H - Design Layouts - Utility Services - Space Allocations In Footways -

Hunter Water Area

28 COMMENTARY On WAT–1200 SERIES DRAWINGS – Embedment, trench fill and restraints

- 28.1 General
- 28.2 WAT–1200 Soil classification guidelines
- 28.3 WAT–1201-V Embedment and trench fill
- 28.4 WAT-1202 Standard embedment All pipe types
- 28.5 WAT-1203 Special embedments Inadequate and poor foundation

28.6 WAT-1204-V - Special embedments - Concrete, geotextile and cement stabilised systems

- 28.7 WAT–1205 Thrust block details Concrete blocks
- 28.8 WAT-1206 Thrust block details Timber & recycled plastic blocks
- 28.9 WAT-1207-V Thrust and anchor blocks Gate valves and vertical bends
- 28.10 WAT-1208 Restrained joint system DN 100 to DN 375 DI mains
- 28.11 WAT–1209 Trench drainage Bulkheads and trenchstop
- 28.12 WAT–1210 Trench drainage Typical systems

28.13 WAT-1211-V, WAT-1212-V, WAT-1213-V and WAT-1214-V - Buried crossings

HW 28.14 WAT-1250-H AND WAT-1251-H - Standard Trench Details

HW 28.15 WAT–1252-H – Thrust Block Details

- HW 28.16 WAT–1253-H AND WAT–1254-H Anchorage Details Stop Valve Installations
- HW 28.17 WAT-1255-H Buried Crossings

29 COMMMENTARY ON WAT-1300 SERIES – INSTALLATION PRACTICES / STRUCTURES

29.1 General

29.2 WAT-1300-V – Valve and hydrant identification 29.3 WAT-1301-V and WAT-1302-V – Typical valve & hydrant installation 29.4 WAT-1303-V, WAT-1304-V, WAT-1305-V AND WAT-1306-V – Typical surface fitting installation 29.5 WAT-1307-V – Typical appurtenance (scour) installation

29.6 WAT-1308-V and WAT-1309-V - Typical appurtenance (valve) installation

29.7 WAT-1310-V, wat-1311 and WAT-1312 - Aerial crossings

29.8 WAT-1313 - Flanged joints

HW 29.9 WAT-1350-H AND WAT-1351-H - Typical Appurtenance (Valve) Installation

HW 29.10 WAT-1355-H - Aerial Crossings - Circular Rc Piers In Non-Flood Conditions

30 COMMENTARY ON WAT-1400 SERIES - FABRICATION DETAILS

30.1 General

30.2 WAT-1400 – Typical steel pipe jointing – Butt welding of joints

30.3 WAT-1401-V - Typical steel pipe jointing - RRJ spigot bands

30.4 WAT-1402 - Typical steel pipe jointing - Welded pipe collars

30.5 WAT-1403 - Typical steel fabrication - Bends

30.6 WAT-1404 - Typical steel fabrication - Access openings

30.7 WAT-1405 - Typical steel fabrication - Dismantling and flexible joints

30.8 WAT-1406-V and WAT-1407-V - Valve connection & by-pass arrangements

30.9 WAT-1408-V – Joint corrosion protection

30.10 WAT-1409 - Hydrant installation fittings - PE assemblies

HW 30.11 WAT-1450-H - TYPICAL STEEL PIPE JOINTING - LEAD AND RR JOINTS

STANDARD DRAWINGS

TABLES

TABLE 28.1 MINIMUM TRENCH DIMENSIONS

26 LISTING OF STANDARD DRAWINGS

DRAWING NUMBER	ACTIVITY	TITLE	Equivalent 1999 DRAWING NUMBER
PIPELINE LAY	Ουτ		
WAT-1100*	Design Layouts	Typical Locality Plan	
WAT-1101*	Design Layouts	Typical Site Plan	
WAT-1102-V	Typical Mains Construction	Reticulation Main Arrangements	WAT-200
WAT-1103-V	Typical Mains Construction	Distribution and Transfer Mains	WAT-201
WAT-1104-V	Typical Mains Construction	DN 63 PE Cul-de-Sac Arrangement	WAT-202
WAT-1105-V	Typical Mains Construction	Connection to Existing Mains	
WAT-1106-V	Property Services	Single Service Main to Meter	WAT-300
WAT-1107-V	Property Services	Split Service Main to Meter	WAT-301
WAT-1108-V	Property Services	Connection to Main	WAT-302
WAT-1109-V	Property Services	Above Ground Meter Assembly Arrangement	WAT–303
WAT-1150-H	Water Main Symbols		
WAT-1151-H	Design Layouts	Typical Locality Plan	
WAT-1152-H	Design Layouts	Typical Site Plan	
WAT–1153-H	Design Layouts	Utility Services – Space Allocations in Footways – Hunter Water Area	
EMBEDMENT	TRENCHFILL AND RESTRAINTS		
WAT-1200	Soil Classification Guidelines	And Allowable Bearing Pressures for Anchors and Thrust Blocks	WAT-400
WAT-1201-V	Embedment & Trenchfill	Typical Arrangement	WAT-100
WAT-1202	Standard Embedment	All Pipe Types	
WAT-1203	Special Embedments	Inadequate and Poor Foundation	WAT-101
WAT-1204-V	Special Embedments	Concrete, Geotextile and Cement Stabilised Systems	WAT–102
WAT-1205	Thrust Block Details	Concrete Blocks	WAT-203
WAT-1206*	Thrust Block Details	Timber & Recycled Plastic Blocks	WAT-204
WAT-1207-V	Thrust and Anchor Blocks	Gate Valves and Vertical Bends	WAT-205
WAT-1208	Restrained Joint System	DN 100 to DN 375 DI Mains	
WAT-1209	Trench Drainage	Bulkheads and Trenchstop	WAT-103
WAT-1210	Trench Drainage	Typical Systems	WAT-104
WAT-1211-V	Buried Crossings	Under Obstructions	WAT-105
WAT-1212-V	Buried Crossings	Major Roadways	WAT-106
WAT-1213-V	Buried Crossings	Railways	WAT-107
WAT-1214-V	Buried Crossings	Bored & Jacked Encasing Pipe Details	
WAT-1250-H	Standard Trench Details	Reticulation Mains DN 100 to DN 375	
WAT-1251-H	Standard Trench Details	Transfer and Distribution Mains DN 300 to DN 750	
WAT-1252-H	Thrust Block Details	DN 450 to DN 750 Mains	

DRAWING NUMBER	ACTIVITY	TITLE	Equivalent 1999 DRAWING NUMBER
EMBEDMENT /	TRENCHFILL AND RESTRAINTS contin	nued	
WAT-1253-H	Anchorage Details	Stop Valve Installations up to DN 1200 SCL Mains	
WAT-1254-H	Anchorage Details	Stop Valve Installations up to DN 750 DICL Mains	
WAT-1255-H	Buried Crossings	Under Minor Obstructions	
INSTALLATION	N PRACTICES/ STRUCTURES		
WAT-1300-V	Valve and Hydrant Identification	Identification Markers & Marker Posts	WAT–207
WAT-1301-V	Typical Valve & Hydrant Installation	Valve Arrangement	WAT–206
WAT-1302-V	Typical Valve & Hydrant Installation	Hydrants and Air Relief Valves	WAT–206 WAT–210
WAT-1303-V	Typical Surface Fitting Installation	Gate Valve Surface Boxes Non Trafficable	
WAT-1304-V	Typical Surface Fitting Installation	Gate Valve Surface Boxes Trafficable	WAT–208
WAT-1305-V	Typical Surface Fitting Installation	Hydrant Surface Boxes Trafficable and Non Trafficable	WAT–209
WAT-1306-V	Typical Surface Fitting Installation	Hydrant Surface Boxes Trafficable	
WAT-1307-V	Typical Appurtenance Installation	Scour Arrangements	WAT–211
WAT-1308-V	Typical Appurtenance Installation	Valve Chambers	
WAT-1309-V	Typical Appurtenance Installation	Pressure Reducing Valves (PRV)	WAT–213
WAT-1310-V	Aerial Crossings	Aqueduct	WAT–108
WAT-1311	Aerial Crossings	Aqueduct Protection Grille	WAT–109
WAT-1312	Aerial Crossings	Bridge Crossing Concepts	
WAT-1313	Flanged Joints	Bolting Details	
WAT–1350-H	Typical Appurtenance Installation	Valve Gearbox Chamber for Vertical Type Gate Valve & Bypass in Footway	
WAT-1351-H	Typical Appurtenance Installation	Valve Gearbox Chamber for Vertical Type Gate Valve & Bypass in Carriageway	
WAT-1355-H	Aerial Crossings	Circular RC Piers in Non Flood Conditions for DN 100 to DN 750 Mains	
FABRICATION	DETAILS		
WAT-1400	Typical Steel Pipe Jointing	Butt Welding of Joints	
WAT-1401-V	Typical Steel Pipe Jointing	Rubber Ring Joint Spigot Bands	
WAT-1402	Typical Steel Pipe Jointing	Welded Pipe Collars	
WAT-1403	Typical Steel Fabrication	Bends	
WAT-1404	Typical Steel Fabrication	Access Opening for Pipes ≥DN 750	
WAT-1405	Typical Steel Fabrication	Dismantling and Flexible Joints	
WAT-1406-V	Typical Steel Fabrication	Valve Connection & Bypass	
WAT-1407-V	DI Installation	Valve Bypass Arrangement DI and GRP Pipe	
WAT-1408-V	Joint Corrosion Protection	Cement Mortar Lined Steel Pipe DN 300 to DN 1200	
FABRICATION	DETAILS continued		

DRAWING NUMBER	ACTIVITY	TITLE	Equivalent 1999 DRAWING NUMBER
WAT-1409	Hydrant Installation Fittings	PE Assemblies	PE Code
WAT-1450-H	Typical Steel Pipe Jointing	Welding of Existing Lead and Rubber Ring Joints	

NOTE: 1999 Drawing WAT-212 - "Swabbing Point Typical Arrangement" has been deleted from the new series of drawings

* This Drawing is **NOT** used by Hunter Water.