CONTENTS

PREFACE
6

INTRODUCTION
9

PART 0: GLOSSARY OF TERMS AND ABBREVIATIONS

I Glossary of Terms
13

II Abbreviations
25

III Referenced Documents
29

IV Other References
33

PART 1: PLANNING AND DESIGN

Contents
36

1 General
43

2 System Planning
51

3 Flow Estimation
59

4 Detail Design
61

5 Property Connection
86

6 Maintenance Structures
90

7 Ancillary Structures
101

8 Structural Design
109

9 Design Review and Drawings
115

Appendix A Estimation of Equivalent Population (EP)
123

Appendix B Flow Estimation for Undeveloped Areas
129

Appendix C Gauging of Sewer Overflows, Flows, Levels and Velocities
135

Appendix D Computer Flow Modelling
138

Appendix E Analysis of Flow Gauging Results from Existing Systems
139

PART 2: PRODUCTS AND MATERIALS

Contents
142

10 Products and Materials Overview
143

Appendix F Quality Assurance of Products and Materials
160

PART 3: CONSTRUCTION

Contents
168

11 General
173

12 Quality
175

13 General Construction
178

14 Products and Materials
188

15 Excavation
193
16 Bedding for Pipes and Maintenance Structures 196
17 Pipe Laying and Jointing 198
18 Maintenance Holes (MHs) 205
19 Maintenance Shafts (MS and TMS) and Inspection Shafts (IS) 208
20 Pipe Embedment and Support 209
21 Fill 212
22 Acceptance Testing 214
23 Tolerances on As-Constructed Work 227
24 Connections to Existing Sewers 229
25 Restoration 230
26 Work As Constructed Details 232
Appendix G Ovality Testing of PVC and GRP Gravity Sewers Default Prover Diameters 233

PART 4: STANDARD DRAWINGS

Contents 236
27 Introduction 238
28 Listing of Standard Drawings 240
29 Commentary on SEW 1100 Series – Pipeline Layout 243
30 Commentary on SEW 1200 Series – Embedment and Trench Fill 249
31 Commentary on SEW 1300 Series – Maintenance Structures 257
32 Commentary on SEW 1400 Series – Special Crossings/Structures Arrangements 261
32 Commentary on SEW 1500 Series – Insertion and Repair Systems 264

STANDARD DRAWINGS AND DRAWINGS 267

SEW-1100 Series Drawings – Pipeline Layout
SEW-1200 Series Drawings – Embedment, Trench Fill and Support Systems
SEW-1300 Series Drawings – Access Structures
SEW–1400 Series Drawings – Special Crossings / Structures Arrangements
SEW–1500 Series Drawings – Connections to Existing Systems
Sewerage Code of Australia
WSA 02—2002-2.3

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 1.0

Part 1: Planning and Design
CONTENTS

1 GENERAL
 1.1 SCOPE
 1.2 PURPOSE AND APPLICATION
 1.3 PLANNING AND DESIGN RESPONSIBILITIES AND INTERFACES
 1.3.1 General
 1.3.2 Planning responsibilities
 1.3.3 Design responsibilities
 1.3.4 Consultation with other parties
 1.4 SEWER SYSTEM DESIGN APPROACH
 1.4.1 System design life
 1.4.2 Objectives of the system design
 1.4.3 Design output

2 SYSTEM PLANNING
 2.1 SEWERAGE SYSTEM PHILOSOPHY AND DEFINITION
 2.1.1 Disaggregation
 2.1.2 Level 1 Total system
 2.1.3 Level 2 Transportation subsystems
 2.1.4 Level 3 Operating units
 2.1.4.1 Sewers
 2.1.4.2 Sewage pumping stations (SPSs)
 2.1.4.3 Storage
 2.2 PLANNING PRINCIPLES
 2.2.1 Planning horizon
 2.2.2 Concept Plan
 2.2.3 Catchment analysis
 2.2.4 Provision for future gauging needs
 2.2.5 Terrorism
 2.3 PLANNING PARAMETERS
 2.3.1 Loading per serviced property
 2.3.2 Assessment of future loads
 2.3.3 Assessment of existing system loads
 2.3.4 Environmental considerations
 2.3.5 Geotechnical investigations
 2.3.6 Operations and maintenance considerations
 2.4 SEWAGE QUALITY
 2.4.1 Septicity
 2.4.2 Sewage quality / Trade waste management
 2.5 PLANNING REVIEW

3 FLOW ESTIMATION
 3.1 DESIGN FLOW ESTIMATION
 3.2 DESIGN FLOW ESTIMATION METHOD
 3.2.1 General
 3.2.2 Traditional design flow estimation method
 3.2.3 Design flow estimation incorporating existing systems
 3.2.4 Design flow estimation—Partially pumped systems
 3.2.5 Flow schedule

4 DETAIL DESIGN
 4.1 DETAIL DESIGN PROCESS
 4.2 DETAIL DESIGN CONSIDERATIONS
 4.2.1 Catchment design
 4.2.2 Design accuracy
 4.2.3 Sewer layout
4.2.4 Environmental considerations
 4.2.4.1 General
 4.2.4.2 Urban salinity
 4.2.4.3 Vegetation
 4.2.4.4 Contaminated sites
 4.2.4.5 Tidal zones
4.2.5 Easements
4.2.6 Disused sewers
4.2.7 Special design considerations
4.3 HORIZONTAL ALIGNMENT OF SEWERS
 4.3.1 General
 4.3.2 Roads, reserves and open space
 4.3.3 Railway reserves
 4.3.4 Public and private property
 4.3.5 Changes in direction using an MH
 4.3.6 Dead-ends
 4.3.7 Horizontal curves in sewers
4.4 OBSTRUCTIONS AND CLEARANCES
 4.4.1 General
 4.4.2 Surface obstructions
 4.4.3 Clearance from transmission towers and power lines
 4.4.4 Clearance from structures
 4.4.5 Underground obstructions and services
 4.4.5.1 General
 4.4.5.2 Clearance requirements
4.5 PIPE SIZING AND GRADING
 4.5.1 General
 4.5.2 Environmental protection requirements
 4.5.3 Minimum air space for ventilation
 4.5.4 Minimum pipe sizes for maintenance purposes
 4.5.5 Maximum capacity of reticulation sewers
 4.5.6 Limitation on sewer size reduction
 4.5.7 Minimum grades for self-cleansing
 4.5.7.1 General
 4.5.7.2 Reticulation sewers
 4.5.7.3 Property connection sewers and ends of lines
 4.5.8 Minimum grades for slime control
 4.5.9 Maximum grades for septicity
 4.5.9.1 Branch and trunk sewers
 4.5.9.2 Reticulation sewers
4.6 VERTICAL ALIGNMENT OF SEWERS
 4.6.1 General
 4.6.2 Long section design plan
 4.6.3 Minimum cover over sewers
 4.6.4 Lot servicing requirements
 4.6.4.1 General
 4.6.4.2 Serviced area requirements for residential lots
 4.6.4.3 Serviced area requirements for industrial and commercial lots
 4.6.4.4 Partial lot service
 4.6.4.5 Servicing of basements
 MRWA 4.6.4.6 Servicing of developed properties
 MRWA 4.6.5 Sewer connection point requirements
 MRWA 4.6.5.1 Minimum depth of sewer connection point
 MRWA 4.6.5.2 Limitations on connections to sewers
 4.6.5.3 Physical losses in customer sanitary drains
 4.6.5.4 Depth of connection point
 4.6.6 Grading through MHs
4.6.6.1 General
4.6.6.2 Internal fall through MHs joining sewers of same diameter
4.6.6.3 Internal falls through MHs joining sewers of different diameters
4.6.6.4 Large falls at MHs
4.6.6.5 Effect of steep grades—hydraulic jumps
MRWA 4.6.6.6 Effect of steep sewer reticulation grades—on maintenance holes
4.6.7 Vertical curves
4.6.8 Compound curves

4.7 CORROSION PREVENTION
4.7.1 General
4.7.2 Internal corrosion
4.7.3 External corrosion

4.8 STEEL SEWERS
4.8.1 Sizes and configurations
4.8.2 Joints
4.8.3 Field welding
4.8.4 Flanged joints

5 PROPERTY CONNECTION
5.1 GENERAL
5.2 LIMITATIONS OF CONNECTION TO SEWERS
5.3 METHODS OF THE PROPERTY CONNECTION
5.3.1 General
5.3.2 IO interface method
5.3.3 Buried interface method
5.4 MAXIMUM DEPTH OF PROPERTY CONNECTION
5.5 NUMBER OF PROPERTY CONNECTIONS
5.5.1 Single occupancy lots
5.5.2 Multiple occupancy lots
5.6 LOCATION OF CONNECTION POINTS
5.6.1 Undeveloped lots
5.6.2 Developed lots
5.7 Y – PROPERTY CONNECTIONS
5.8 LENGTH OF PROPERTY CONNECTION SEWERS
MRWA 5.9 TYPES OF PROPERTY CONNECTIONS
MRWA 5.10 RETAINING WALLS

6 MAINTENANCE STRUCTURES
6.1 TYPES OF MAINTENANCE STRUCTURES
6.2 LOCATIONS OF MAINTENANCE STRUCTURES
6.3 SPACING OF MAINTENANCE STRUCTURES
6.3.1 General
6.3.2 Maintenance structure spacing—Reticulation sewers
6.3.3 Maintenance structure spacing—Branch and trunk sewers
6.4 SPECIAL CONSIDERATIONS FOR LOCATION OF MAINTENANCE STRUCTURES
6.5 SPECIAL CONSIDERATIONS FOR CONNECTION OF NEW SEWERS TO EXISTING SEWERS
6.6 MAINTENANCE HOLES (MH)
6.6.1 General
6.6.2 Types of MH construction
6.6.3 Design parameters for MHs
6.6.4 Property connections into MHs
6.6.5 Diameters of MHs
6.6.6 MH base layout
6.6.7 Flotation
6.6.8 Ladders, step irons and landings
6.6.9 MH covers
6.6.10 Cross-fall on MH covers
6.7 MAINTENANCE SHAFTS (MS)
 6.7.1 General
 6.7.2 Design parameters for MSs and TMSs
 6.7.3 Property connection sewer into MSs and TMSs

MRWA 6.7.4 Inspection shafts (ISs)
 MRWA 6.7.4.1 Terminal inspection shaft (Type A)
 MRWA 6.7.4.2 Vertical drop inspection shaft (Type B)
 MRWA 6.7.4.3 Intermediate inspection shaft (Type C)

6.8 OTHER MAINTENANCE STRUCTURES AT INTERFACE OF PROPERTY CONNECTION SEWER AND CUSTOMER DRAINS
MRWA 6.9 SEWERS FROM JUNCTIONS

7 ANCILLIARY STRUCTURES

7.1 GENERAL

7.2 WATER SEALS, BOUNDARY TRAPS AND WATER-SEALED MHS/GAS CHECK MHS
 7.2.1 General design parameters
 7.2.2 Water seals on reticulation sewers entering branch or trunk sewers
 7.2.3 Water seals on branch sewers entering trunk sewers

7.3 WATER SEALS AND GAS CHECK MHS
 7.3.1 General
 7.3.2 Design parameters for water seals and gas check MHs

7.4 VERTICAL AND NEAR VERTICAL SEWERS
 7.4.1 General
 7.4.2 Design parameters for bored, exposed, encased vertical and near vertical sewers

7.5 VENTILATION
 7.5.1 General
 7.5.2 Design parameters for vents

7.6 NEAR-HORIZONTAL BOREHOLES
 7.6.1 General
 7.6.2 Design requirements
 7.6.3 Maintenance requirements

7.7 VORTEX INLETS AND WATER CUSHIONS

7.8 INVERTED SYPHONS
 7.8.1 General
 7.8.2 Design parameters for inverted syphons

7.9 OVERFLOWS / EMERGENCY RELIEF STRUCTURES (ERS)
 7.9.1 General
 7.9.2 Design parameters for ERSs

7.10 FLOW MEASURING DEVICES

7.11 WET WEATHER STORAGE
 7.11.1 General
 7.11.2 Design requirements for wet weather storage

8 STRUCTURAL DESIGN

8.1 GENERAL

8.2 PRODUCTS AND MATERIALS

8.3 STRUCTURAL COMPUTATIONS

8.4 EXTERNAL FORCES

8.5 FOUNDATION DESIGN AND GROUND WATER CONTROL

8.6 GEOTECHNICAL CONSIDERATIONS
 8.6.1 General
 8.6.2 Sewers in engineered or controlled fill
 8.6.3 Sewers in non-engineered fill
 8.6.4 Filling along route of pipeline
 8.6.5 Mine subsidence
 8.6.6 Slip areas
 8.6.7 Water-charged ground

8.7 ABOVE GROUND CROSSINGS
8.8 PIPE COVER
8.9 TRENCH DESIGN
8.10 BULKHEADS AND TRENCHSTOPS

9 DESIGN REVIEW AND DRAWINGS
9.1 DESIGN REVIEW
9.2 DESIGN DRAWINGS
 9.2.1 General
 9.2.2 Real property information
 9.2.3 Sewers
 9.2.4 Structures
 9.2.5 Longitudinal sections (profiles)
 9.2.6 Title block notation and standard notes
 9.2.7 Other
9.3 DRAFTING STANDARDS
 9.3.1 Scale
 9.3.2 Recording of as-constructed information

APPENDIX A ESTIMATION OF EQUIVALENT POPULATION (EP)
A1 GENERAL
A2 ESTIMATION METHOD
 A2.1 Residential component
 A2.1.1 Single occupancy lots
 A2.1.2 Multiple occupancy lots—Medium density residential
 A2.1.3 Multiple occupancy lots—High-density / multi-storey residential
 A2.2 Commercial and special use components
 A2.3 Industrial component
 A2.3.1 General
 A2.3.2 Use of Tables A2 and A3
A3 WORKED EXAMPLE FOR AN INDUSTRIAL DEVELOPMENT

APPENDIX B FLOW ESTIMATION FOR UNDEVELOPED AREAS
B1 GENERAL
B2 PEAK DRY WEATHER (SANITARY) FLOW
B3 GWI CALCULATION
B4 IIF CALCULATION
B5 WORKED EXAMPLE FOR A RESIDENTIAL DEVELOPMENT
 B5.1 Description
 B5.2 Peak dry weather flow (PDWF)
 B5.3 Ground water infiltration (GWI)
 B5.4 Rainwater dependent inflow and infiltration (IIF)
 B5.5 Design flow

APPENDIX C GAUGING OF SEWER OVERFLOWS, FLOWS, LEVELS AND VELOCITIES
C1 GENERAL
C2 PRE-CONSTRUCTED FLUMES AND WEIRS
C3 RETRO-FITTING OF DEVICES
 C3.1 Flumes and weirs
 C3.2 Doppler HVQ gauges
 C3.3 Transit-time HVQ gauges
 C3.4 Other HVQ type gauges
 C3.5 Using “H-only” and a rating table at unrated structures
 C3.6 Flumes and weirs in conjunction with HVQ gauges
C4 FULL PIPE METERS
C5 OVERFLOW EVENT RECORDERS

APPENDIX D COMPUTER FLOW MODELLING
APPENDIX E ANALYSIS OF FLOW GAUGING RESULTS FROM EXISTING SYSTEMS

E1 GENERAL
E2 PEAK DRY WEATHER FLOW (PLUS GROUNDWATER INFILTRATION)
E3 INFLOW AND INFILTRATION (WET WEATHER) FLOW (IIF)

TABLES
TABLE 1.1 TYPICAL ASSET DESIGN LIFE
TABLE 1.2 PLANNING AND DESIGN APPROACH
TABLE 4.1 MAXIMUM ALLOWABLE DEFLECTIONS THROUGH A MH (NOT USED BY MRWA)
TABLE 4.2 CLEARANCES BETWEEN SEWERS AND OTHER UNDERGROUND SERVICES
TABLE 4.3 MINIMUM PIPE SIZES FOR RETICULATION AND PROPERTY CONNECTION SERVICES
TABLE 4.4 MAXIMUM CAPACITY FOR RETICULATION SEWERS
TABLE 4.5 MANNING COEFFICIENT
TABLE 4.6 ABSOLUTE MINIMUM GRADES (NOT USED BY MRWA)
TABLE 4.7 MINIMUM GRADES FOR PROPERTY CONNECTION SEWERS AND PERMANENT ENDS (NOT USED BY MRWA)
TABLE 4.8 MINIMUM COVER OVER SEWERS
TABLE 4.9 MINIMUM INTERNAL FALL THROUGH AN MH JOINING RETICULATION SEWERS OF SAME DIAMETER
TABLE 4.10 LIMITATIONS ON LARGE FALLS AT MHS USING INTERNAL AND EXTERNAL DROPS (NOT USED BY MRWA)
TABLE 6.1 ACCEPTABLE MH, MS, TMS AND IS OPTIONS FOR RETICULATION SEWERS
TABLE 7.1 MAXIMUM LIMIT OF DEVIATION IN LEVEL AND LINE OF BOREHOLES
TABLE 7.2 DESIGN REQUIREMENT FOR SILT TRAPS (NOT USED BY MRWA)
TABLE 7.3 REQUIREMENTS FOR VORTEX INLETS AND WATER CUSHIONS
TABLE 8.1 REQUIREMENTS FOR BULKHEADS
TABLE MRWA 9.1 LOCALITY PLAN
TABLE MRWA 9.2 DETAIL PLAN
TABLE MRWA 9.3 LONGITUDINAL SECTION

TABLE A1 EQUIVALENT POPULATIONS FOR SYNCHRONOUS DISCHARGES
TABLE A2 NON-SYNCHRONOUS DISCHARGES – LIST OF INDUSTRIES AND THEIR EP CLASSIFICATIONS
TABLE A3 EP OF NON-RESIDENTIAL EP/HA CLASSIFICATIONS
TABLE B1 LEAKAGE SEVERITY COEFFICIENT (C)
TABLE B2 APPROXIMATE VALUES OF 1(1,2) FOR VARIOUS LOCATIONS
TABLE B3 CONTAINMENT FACTOR VERSUS ARI

FIGURES
FIGURE 2.1 DISAGGREGATION MODEL FOR TRANSPORTATION SUBSYSTEMS
FIGURE 3.1 FLOW COMPONENTS IN A GRAVITY SYSTEM
FIGURE 4.1 PHYSICAL LOSSES IN CUSTOMER SANITARY DRAINS
FIGURE 4.2 DEPTH OF POINT OF CONNECTION AND USE OF RISERS (NOT USED BY MRWA)
FIGURE MRWA EASEMENT GUIDELINES
4.3
FIGURE MRWA EXCESSIVELY DEEP CHANNELS CAUSED BY STEEP GRADES
4.4
FIGURE MRWA INCOMING LEVEL ADJUSTED TO PREVENT DEEP CHANNEL
4.5
FIGURE 6.1 MULTIPLE MS BETWEEN MH AND "LAST" MH/TMS
FIGURE 6.2 MULTIPLE MSS BETWEEN CONSECUTIVE MHS
FIGURE MRWA TERMINAL INSPECTION SHAFT – TYPE A
6.3
FIGURE MRWA VERTICAL DROP INSPECTION SHAFT – TYPE B
6.4
FIGURE MRWA INTERMEDIATE INSPECTION SHAFT – TYPE C
6.5
FIGURE MRWA PANEL SHEET
9.1
FIGURE MRWA MAINTENANCE HOLE SCHEDULE
9.2
FIGURE B1 "D" FACTOR VERSUS AREA – AREAS < 40 HA
Sewerage Code of Australia
WSA 02—2002-2.3

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)
Version 1.0

Part 2: Products and Materials
CONTENTS

10 PRODUCTS AND MATERIALS OVERVIEW
 10.1 PURPOSE
 10.2 SCOPE
 10.3 RESPONSIBILITIES
 10.3.1 Water Agency
 10.3.2 Designer
 10.3.3 Constructor
 10.3.4 Purchaser
 10.4 PRODUCT AND MATERIAL STANDARDS AND SPECIFICATIONS
 10.4.1 Product standards
 10.4.2 Purchase specifications
 10.4.3 Purchase specifications—Alternatives
 10.5 QUALITY ASSURANCE
 10.5.1 Default requirement
 10.5.2 Additional information on quality assurance
 10.5.3 Innovative products and materials
 10.6 SELECTION GUIDE FOR PIPELINE SYSTEMS
 10.7 ADDITIONAL PRODUCT AND MATERIAL INFORMATION

APPENDIX F QUALITY ASSURANCE OF PRODUCTS AND MATERIALS
 F1 GENERAL
 F2 QUALITY ASSURANCE OPTIONS
 F2.1 ISO 9000 quality management system certification
 F2.2 Product certification
 F2.2.1 Product certification – Type 1
 F2.2.2 Product certification – Type 3
 F2.2.3 Product certification – Type 5
 F2.3 Supplier’s declaration of conformance
 F2.4 Second party verification
 F3 FACTORS INFLUENCING SELECTION OF QUALITY ASSURANCE OPTIONS
 F3.1 General factors
 F3.2 Likelihood of manufacturing non-conformance
 F3.3 Likelihood of failure of pipeline system from a product non-conformance
 F3.4 Consequences of failure
 F3.5 Product specification
 F3.6 Project magnitude / management
 F3.7 Innovative products
 F4 SELECTING THE QUALITY ASSURANCE OPTION
 F4.1 General factors
 F4.2 Product certification
 F4.2.1 General
 F4.2.2 Type 1
 F4.2.3 Type 3
 F4.2.4 Type 5
 F4.3 ISO 9000 quality management system certification
 F4.4 Supplier’s declaration of conformance
 F4.5 Second party verification

TABLES
 TABLE 10.1 PRINCIPAL GRAVITY SEWER PIPELINE SYSTEMS
 TABLE 10.2 PRINCIPAL SEWERAGE GRAVITY PIPELINE SYSTEMS - PRECAUTIONS, LIMITATIONS ADVANTAGES AND DISADVANTAGES
 TABLE 10.3 PRINCIPAL SEWERAGE PRESSURE PIPELINE SYSTEMS
 TABLE 10.4 PRINCIPAL SEWERAGE PRESSURE PIPELINE SYSTEMS - PRECAUTIONS, LIMITATIONS ADVANTAGES AND DISADVANTAGES
Sewerage Code of Australia

WSA 02—2002-2.3

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 1.0

Part 3: Construction
CONTENTS

11 GENERAL
 11.1 SCOPE
 11.2 INTERPRETATION

12 QUALITY
 12.1 QUALITY ASSURANCE
 12.1.1 General
 12.1.2 Quality system
 12.1.3 Project management plan
 12.1.4 Inspection and test plans
 12.1.5 Quality tests
 12.1.6 Quality audits
 12.1.7 Traceability
 12.1.8 Quality records
 12.1.9 Inspection
 12.2 PERSONNEL QUALIFICATIONS

13 GENERAL CONSTRUCTION
 13.1 GENERAL
 13.2 ORDER OF CONSTRUCTION, TESTING AND COMMISSIONING
 13.3 CONTRACT INTERFACES
 13.4 CUSTOMER FOCUS
 13.4.1 General
 13.4.2 Resolution of complaints
 13.5 PROTECTION OF PEOPLE, PROPERTY AND ENVIRONMENT
 13.5.1 Safety of people
 13.5.2 Protection of other services
 13.5.3 Disused / Redundant sewers
 13.5.4 Road reserves or other thoroughfares
 13.5.4.1 Treatment of pavements and other surfaces
 13.5.4.2 Traffic management
 13.5.4.3 Cleanliness of roads, paths, accesses and drainage paths
 13.5.4.4 Storage of products, materials and equipment
 13.5.4.5 Obstruction of street drainage
 MRWA 13.5.4.6 Road opening permits
 13.5.5 Private and public properties
 13.5.6 Protection of the environment and heritage areas
 13.5.6.1 General
 13.5.6.2 Collection and disposal of wastes
 13.5.6.3 Protection of adjacent lands and vegetation
 13.5.6.4 Control of water pollution
 13.5.6.5 Acid sulphate and contaminated soils
 13.5.6.6 Control of noise and atmospheric pollution
 13.6 AFFECTED PARTY NOTIFICATIONS
 13.7 ALTERATION OF EXISTING SERVICES
 13.8 SURVEY MARKS
 13.9 CONSTRUCTION TOLERANCES
 13.10 LATENT CONDITIONS

14 PRODUCTS AND MATERIALS
 14.1 AUTHORISED PRODUCTS AND MATERIALS
 14.2 REJECTED PRODUCTS AND MATERIALS
 14.3 TRANSPORTATION, HANDLING AND STORAGE OF PRODUCTS AND MATERIALS
 14.3.1 General
 14.3.2 Plastics-lined concrete products
 14.4 DELIVERY INSPECTION OF PRODUCTS AND MATERIALS
14.5 CONCRETE WORKS
 14.5.1 Delivery
 14.5.2 Transportation of concrete
 14.5.3 Formwork
 14.5.3.1 General
 14.5.3.2 Formwork for plastics-lined concrete
 14.5.4 Reinforcement
 14.5.5 Placement
 14.5.5.1 General
 14.5.5.2 Placement in water
 14.5.6 Slump
 14.5.7 Compaction
 14.5.8 Stripping
 14.5.9 Curing
 14.5.10 Repair of blemishes

14.6 SUPPLY OF WATER TO THE WORKS

14.7 ON-SITE STOCKPILES

15 EXCAVATION
 15.1 SAFETY
 15.2 LIMITS OF EXCAVATION
 15.3 EXCAVATION ACROSS IMPROVED SURFACES
 15.4 EXCAVATION IN ROOT ZONES
 15.5 BLASTING
 15.6 SUPPORT OF EXCAVATIONS
 15.7 DRAINAGE AND DEWATERING
 15.8 FOUNDATIONS AND FOUNDATION STABILISATION
 15.9 SURPLUS EXCAVATED MATERIAL

16 BEDDING FOR PIPES AND MAINTENANCE STRUCTURES
 16.1 TRENCH FLOOR PREPARATION
 16.2 BEDDING MATERIALS
 16.3 PLACEMENT OF BEDDING
 16.4 SPECIAL PIPE SUPPORT FOR NON-SUPPORTIVE SOILS
 16.5 BEDDING FOR MAINTENANCE SHAFTS AND BENDS
 16.6 BEDDING FOR MAINTENANCE HOLES

17 PIPE LAYING AND JOINTING
 17.1 INSTALLATION OF PIPES
 17.1.1 General
 17.1.2 Cleaning, inspection and joint preparation
 17.1.3 Polyethylene
 17.1.4 Laying
 17.2 HORIZONTAL AND VERTICAL DEFLECTION OF SEWERS
 17.2.1 General
 17.2.2 Methods of deflection
 17.2.3 Horizontal curves
 17.2.4 Vertical curves
 17.2.5 Compound curves
 17.3 HORIZONTAL AND VERTICAL SEPARATION OF CROSSING PIPELINES
 17.4 FLOTATION CONTROL
 17.5 TRENCH STOPS
 17.6 BULKHEADS
 17.7 PROPERTY CONNECTION SEWERS
 17.8 DEAD ENDS
 17.9 MARKING OF PROPERTY CONNECTION SEWERS AND DEAD ENDS
 17.10 CORROSION PROTECTION OF CAST IRON
 17.11 MARKING TAPES AND POSTS
17.11.1 Non-detectable marking tape
17.11.2 Detectable marking tape
MRWA 17.11.3 Marker posts
17.12 BORED PIPES UNDER ROADS, DRIVEWAYS AND ELSEWHERE
17.13 AQUEDUCTS
17.14 BRIDGE CROSSINGS
17.15 PLASTICS-LINED RC PIPE JOINTING
 17.15.1 General
 17.15.2 Plastics lining work protection
 17.15.3 Field jointing
 17.15.4 Plastics lining ancillary work
 17.15.4.1 Alignment of lining keys
 17.15.4.2 Provision of seepage channels
 17.15.4.3 Use of jointing accessories and adhesives
17.16 WELDING OF STEEL PIPELINES
 17.16.1 General
 17.16.2 Field welding of flanges

18 MAINTENANCE HOLES (MHS)
 18.1 GENERAL
 18.2 MH BASE
 18.3 TRENCH DRAINAGE AROUND MHS
 18.4 PRECAST CONCRETE MH SYSTEMS
 18.5 CAST IN-SITU CONCRETE MH
 18.6 BENCHING AND CHANNELS
 18.7 CONCRETING FOR PLASTICS-LINED WORK
 18.7.1 Concrete work planning
 18.7.2 Fixing of plastics lining for concrete work
 18.7.3 Concrete placement and formwork removal
 18.8 INTERNAL COATING OF CONCRETE MHS
 18.9 COVERS
 18.10 CONNECTIONS TO MHS
 18.11 MH DROPS

19 MAINTENANCE SHAFTS (MS AND TMS) AND INSPECTION SHAFTS (IS)
 19.1 GENERAL
 19.2 SEALING CAPS
 19.3 COVERS
 19.4 CONNECTIONS TO MSS AND TMSS

20 PIPE EMBEDMENT AND SUPPORT
 20.1 GENERAL
 20.2 EMBEDMENT MATERIALS
 20.3 COMPACTION OF EMBEDMENT
 20.3.1 Methods
 20.3.2 Compaction trials / Pre-qualification of embedment compaction method
 20.3.2.1 General
 20.3.2.2 Test method
 20.3.2.3 Interpretation and applicability
 20.3.3 Compaction control
 20.4 SPECIAL BEDDING AND EMBEDMENTS / GEOTEXTILE SURROUND AND PILLOW
 20.5 REMOVAL OF TRENCH SUPPORTS
 20.6 CONCRETE EMBEDMENT AND ENCASEMENT

21 FILL
 21.1 TRENCH FILL
 21.1.1 General
 21.1.2 Material requirements
 21.1.3 Compaction of trench fill
 21.2 EMBANKMENT FILL
21.3 DRIVES AND TUNNEL FILL

22 ACCEPTANCE TESTING

22.1 GENERAL

22.2 VISUAL INSPECTION—ABOVE-GROUND

22.3 COMPACTION TESTING

22.3.1 General

22.3.2 Minimum compaction

22.3.3 Embedment compaction testing

22.3.3.1 Applicable pipe sizes

22.3.3.2 Frequency and location of embedment tests

22.3.3.3 Retesting

22.3.4 Trench fill compaction testing

22.3.4.1 Trafficable Test Zone

22.3.4.2 Non-trafficable test zone

22.3.4.3 Test method

22.3.4.4 Frequency and location of tests

22.3.4.5 Retesting

22.3.5 Other fill compaction testing

22.3.5.1 General

22.3.5.2 Trafficable test zone

22.3.5.3 Non-trafficable test zone

22.3.5.4 Frequency and location of tests

22.3.5.5 Retesting

22.4 AIR PRESSURE AND VACUUM TESTING OF SEWERS

22.4.1 General

22.4.2 Air testing methods for sewers

22.4.2.1 Vacuum testing

22.4.2.2 Low pressure air testing

22.4.3 Testing of sewers >DN 1500

22.4.3.1 General

22.4.4 Testing of concrete MHs

22.4.4.1 General

22.4.4.2 Test method

22.5 INFILTRATION TESTING

22.6 DEFLECTION (OVALLITY) TESTING OF FLEXIBLE SEWERS

22.6.1 General

22.6.2 Ovality proving tools

22.6.3 Flexible sewers ≤DN 300

22.6.4 Flexible sewers >DN 300

22.6.4.1 General

22.6.4.2 Flexible sewers >DN 300 and <DN 750

22.6.4.3 Flexible sewers ≥DN 750

22.7 CCTV INSPECTION

22.8 INSPECTION AND TESTING OF PLASTIC LINED CONCRETE SEWERS AND MHs

22.8.1 Visual inspection

22.8.2 Spark testing

22.8.3 Locking key pull-out tests

MRWA 22.8.4 Digital coating thickness gauge

22.9 PRESSURE TESTING OF INVERTED SYPHONS

22.9.1 General

22.9.2 System test pressure

22.9.3 Maximum allowable loss

22.9.4 Test procedure

22.9.5 Satisfactory pressure test

22.9.6 Failure of test

MRWA 22.9.7 Rectification of faults
23 TOLERANCES ON AS-CONSTRUCTED WORK

23.1 HORIZONTAL TOLERANCES
 23.1.1 Sewers and on-line structures (e.g. MHs, MSs, TMSs, ISs or vents)
 23.1.2 Property connection sewers

23.2 VERTICAL TOLERANCES
 23.2.1 Sewers and structures
 23.2.2 Property connection risers and inspection openings
 23.2.3 Grade
 23.2.4 Verticality ("plumb")

23.3 TOLERANCES ON FINISHED SURFACE STRUCTURES AND FITTINGS

23.4 CAST IN-SITU CONCRETE STRUCTURES AND SLABS

24 CONNECTION TO EXISTING SEWERS

25 RESTORATION
 25.1 GENERAL
 25.2 PAVEMENTS
 25.3 LAWNS
 25.4 GRASSED AREAS
 25.5 BUSHLAND
 25.6 PROVISION FOR SETTLEMENT
 25.7 MAINTENANCE OF RESTORED SURFACES

26 WORK AS CONSTRUCTED DETAILS

APPENDIX G OVALITY TESTING OF PVC AND GRP GRAVITY SEWERS DEFAULT PROVER DIAMETERS
 G1 GENERAL
 G2 DEFAULT PROVER DIAMETERS

TABLES

TABLE 17.1 METHODS OF ACHIEVING CURVED SEWERS
TABLE 20.1 MAXIMUM PARTICLE SIZE
TABLE 22.1 EMBEDMENT OF FLEXIBLE PIPES MINIMUM COMPACTION
TABLE 22.2 EMBEDMENT OF RIGID PIPES MINIMUM COMPACTION
TABLE 22.3 TRENCH / EMBANKMENT FILL OF RIGID AND FLEXIBLE PIPES AND MAINTENANCE STRUCTURES – MINIMUM COMPACTION (NOT USED BY MRWA)
TABLE 22.4 PRESSURE AND VACUUM AIR TESTING ACCEPTANCE TIMES FOR 7 KPA PRESSURE CHANGE
TABLE MRWA RUBBER RING JOINTED PIPE
 22.4.1 TABLE MRWA SOLVENT CEMENT AND FUSION JOINTED PIPE
 22.4.2 TABLE 22.5 CONCRETE MH TESTING FREQUENCY
TABLE 22.6 MINIMUM TEST TIMES FOR CONCRETE MHs
TABLE 22.7 MAXIMUM ALLOWABLE SHORT-TERM PIPE DEFLECTIONS
TABLE 23.1 SEWER GRADE TOLERANCES
TABLE 23.2 PROPERTY CONNECTION SEWER GRADE TOLERANCES
TABLE G1 PROVER OUTSIDE DIAMETER FOR PVC AND GRP PIPES
Sewerage Code of Australia
WSA 02—2002-2.3

Melbourne Retail Water Agencies Edition
(Including City West Water, South East Water & Yarra Valley Water)

Version 1.0

Part 4: Standard Drawings
CONTENTS

27 INTRODUCTION
 27.1 GENERAL
 27.2 DRAWING COMMENTARY
 MRWA 27.3 VARIED STANDARD DRAWINGS
 MRWA 27.4 SUPPLEMENTARY (ADDITIONAL) DRAWINGS

28 LISTING OF STANDARD DRAWINGS

29 COMMENTARY ON SEW–1100 SERIES – PIPELINE LAYOUT
 29.1 GENERAL
 29.2 SEW–1100, SEW–1101 AND SEW–1102 – DESIGN LAYOUTS
 29.2.1 SEW–1100 – Locality and site plan
 29.2.2 SEW–1101 – Longitudinal sections
 29.2.3 SEW–1102 – Schedule of Works
 29.3 SEW–1103 – TYPICAL ARRANGEMENTS
 29.4 SEW–1104-V AND SEW–1105-V – PROPERTY CONNECTION DETAILS
 29.5 SEW–1106 AND SEW–1107 – PROPERTY CONNECTION DETAILS – METHODS
 29.5.1 SEW–1106 – IO interface method
 29.5.2 SEW–1107 – Buried interface method
 29.6 SEW–1108 – PROPERTY CONNECTION DETAILS – Y BRANCH AND AROUND OBSTRUCTIONS
 29.7 SEW–1109 – PROPERTY CONNECTION DETAILS – PRIVATE PROPERTY & MARKING SYSTEMS
 MRWA 29.8.1 SEW–1150-M – Locality plan
 MRWA 29.8.2 SEW–1151-M – Detail plan
 MRWA 29.8.3 SEW–1152-M – Longitudinal plan
 MRWA 29.9.1 SEW–1153-M – VC pipes
 MRWA 29.9.2 SEW–1154-M – Flexible pipes
 MRWA 29.9.3 SEW–1155-M – Miscellaneous

30 COMMENTARY ON SEW–1200 SERIES – EMBEDMENT AND TRENCH FILL
 30.1 GENERAL
 30.2 MAXIMUM DEPTH TO INVERT FOR STANDARD SUPPORT TYPES
 30.3 SEW–1200 – SOIL CLASSIFICATION GUIDELINES
 30.4 SEW–1201-V – EMBEDMENT AND TRENCHFILL – TYPICAL ARRANGEMENTS
 30.5 SEW–1202 – STANDARD EMBEDMENT FLEXIBLE AND RIGID PIPES
 30.6 SEW–1203 – SPECIAL EMBEDMENT INADEQUATE FOUNDATIONS
 30.7 SEW–1204 – SPECIAL EMBEDMENT SUPPORT USING PILES
 30.8 SEW–1205 – SPECIAL EMBEDMENT CONCRETE AND STABILISED SUPPORTS
 30.9 SEW–1206 – BULKHEADS AND TRENCHSTOP
 30.10 SEW–1207 – TRENCH DRAINAGE TYPICAL SYSTEMS
 30.11 SEW–1208 – VERTICALS AND NEAR VERTICALS EXPOSED AND CONCEALED METHODS

31 COMMENTARY ON SEW–1300 SERIES – MAINTENANCE STRUCTURES
 31.1 GENERAL
 31.2 SEW–1300-V – PRECAST MH TYPES P1 AND P2
 31.3 SEW–1301-V – CAST IN-SITU MH TYPES C1 AND C2
 31.4 SEW–1302-V – MH PIPE CONNECTION DETAILS
 31.5 SEW–1303-V – MH CHANGE IN LEVEL ARRANGEMENTS
 31.6 SEW–1304-V AND SEW–1305-V – MH CHANNEL ARRANGEMENTS AND DETAILS
 31.7 SEW–1306-V – ALTERNATIVE MH DROP CONNECTIONS
 31.8 SEW–1307-V – STEP IRONS AND LADDERS
31.9 SEW–1308-V – TYPICAL MH COVER ARRANGEMENTS
 31.10.1 SEW–1309-V – Sewers DN 375 to DN 750 MHLs
 31.10.2 SEW–1310 – Special MHS using permanent formwork
31.11 SEW–1311 AND SEW–1312 – DEEP MHS
31.13 SEW–1317 – TYPICAL MS COVER ARRANGEMENTS

32 COMMENTARY ON SEW–1400 SERIES – SPECIAL CROSSINGS / STRUCTURES ARRANGEMENTS
32.1 GENERAL
32.2 SEW–1400 – SYPHON ARRANGEMENT
32.3 SEW–1401-V, SEW–1402-V AND SEW–1403-V – BURIED CROSSINGS
32.4 SEW–1404, SEW–1405 AND SEW–1406 – AERIAL CROSSINGS
32.5 SEW–1407 AND SEW–1408 – VENTILATION SYSTEMS
32.6 SEW–1409-V, SEW–1410 AND SEW–1411 – WATER SEAL ARRANGEMENTS
32.7 SEW–1412 – EMERGENCY RELIEF STRUCTURES
MRWA 32.8 SEW–1450-M – MARKER POSTS

33 COMMENTARY ON SEW–1500 SERIES – INSERTIONS AND REPAIR SYSTEMS
33.1 GENERAL
33.2 SEW–1500 – CUT-IN METHODS
33.3 SEW–1501-V – INSERTION OF JUNCTIONS
33.4 SEW–1502 – CONSTRUCTION OF MHS AND MSS OVER EXISTING SEwers

STANDARD DRAWINGS

TABLES
TABLE 29.1 MINIMUM RETICULATION AND PROPERTY CONNECTION SEWER SIZES
TABLE 29.2 EQUIVALENT STIFFNESS CLASSES FOR PVC SEWERS
TABLE 30.1 MAXIMUM DEPTH TO INVERT FOR PVC SEWERS
TABLE 30.2 MAXIMUM DEPTH TO INVERT FOR GRP SEWERS
TABLE 30.3 MAXIMUM DEPTH TO INVERT FOR VC SEWERS
TABLE 30.4 MAXIMUM DEPTH TO INVERT FOR RC SEWERS
TABLE 30.5 MAXIMUM PARTICLE SIZE
LISTING OF STANDARD DRAWINGS

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
<th>Equivalent 1999 Drawing Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPELINE LAYOUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEW–1100*</td>
<td>Design Layouts</td>
<td>Typical Locality & Site Plan</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1101*</td>
<td>Design Layouts</td>
<td>Longitudinal Sections</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1102*</td>
<td>Design Layouts</td>
<td>Connection to Existing Sewer Schedule of Works</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1103*</td>
<td>Pipelaying</td>
<td>Typical Arrangements</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1104-V</td>
<td>Property Connection Details</td>
<td>Sewer in Road Reserve</td>
<td>SEW–300</td>
</tr>
<tr>
<td>SEW–1105-V</td>
<td>Property Connection Details</td>
<td>Sewer in Easements & Inside Property</td>
<td>SEW–301</td>
</tr>
<tr>
<td>SEW–1106*</td>
<td>Property Connection Details</td>
<td>IO Interface Method</td>
<td>SEW–302</td>
</tr>
<tr>
<td>SEW–1107*</td>
<td>Property Connection Details</td>
<td>Buried Interface Method</td>
<td></td>
</tr>
<tr>
<td>SEW–1108*</td>
<td>Property Connection Details</td>
<td>“Y” Branch & Around Obstructions</td>
<td>SEW–303</td>
</tr>
<tr>
<td>SEW–1109*</td>
<td>Property Connection Details</td>
<td>Private Property & Marking Systems</td>
<td>SEW–304</td>
</tr>
<tr>
<td>SEW–1150-M</td>
<td>Design Layouts</td>
<td>Typical Locality Plan</td>
<td></td>
</tr>
<tr>
<td>SEW–1151-M</td>
<td>Design Layouts</td>
<td>Typical Detail Plan</td>
<td></td>
</tr>
<tr>
<td>SEW–1152-M</td>
<td>Design Layouts</td>
<td>Typical Longitudinal Plan</td>
<td></td>
</tr>
<tr>
<td>SEW–1153-M</td>
<td>Property Connection Details</td>
<td>VC Pipes</td>
<td></td>
</tr>
<tr>
<td>SEW–1154-M</td>
<td>Property Connection Details</td>
<td>Flexible Pipes</td>
<td></td>
</tr>
<tr>
<td>SEW–1155-M</td>
<td>Property Connection Details</td>
<td>Miscellaneous</td>
<td></td>
</tr>
<tr>
<td>EMBEDMENT / TRENCHFILL AND SUPPORT SYSTEMS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEW–1200</td>
<td>Soil Classification Guidelines And</td>
<td>Allowable Bearing Pressures for Bulkheads</td>
<td>WAT–400</td>
</tr>
<tr>
<td>SEW–1201-V</td>
<td>Embedment and Trenchfill</td>
<td>Typical Arrangements</td>
<td>SEW–100</td>
</tr>
<tr>
<td>SEW–1202</td>
<td>Standard Embedment</td>
<td>Flexible & Rigid Pipes</td>
<td></td>
</tr>
<tr>
<td>SEW–1203</td>
<td>Special Embedment</td>
<td>Inadequate Foundations Requiring Over Excavation & Replacement</td>
<td>SEW–101 SEW–102</td>
</tr>
<tr>
<td>SEW–1204</td>
<td>Special Embedment</td>
<td>Support Utilising Piles</td>
<td></td>
</tr>
<tr>
<td>SEW–1205</td>
<td>Special Embedment</td>
<td>Concrete & Stabilised Supports</td>
<td></td>
</tr>
<tr>
<td>SEW–1206</td>
<td>Trench Drainage</td>
<td>Bulkheads & Trenchstop</td>
<td>SEW–103</td>
</tr>
<tr>
<td>SEW–1207</td>
<td>Trench Drainage</td>
<td>Typical Systems</td>
<td>SEW–104</td>
</tr>
<tr>
<td>SEW–1208</td>
<td>Verticals & Near Verticals</td>
<td>Exposed & Concealed Methods</td>
<td>SEW–211</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
<td>Equivalent 1999 DRAWING NUMBER</td>
</tr>
<tr>
<td>----------------</td>
<td>----------</td>
<td>-------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>SEW–1300-V</td>
<td>Maintenance Holes</td>
<td>Precast Types P1 & P2</td>
<td>SEW–201</td>
</tr>
<tr>
<td>SEW–1301-V</td>
<td>Maintenance Holes</td>
<td>Cast In-situ Types C1 & C2</td>
<td>SEW–202</td>
</tr>
<tr>
<td>SEW–1302-V</td>
<td>Maintenance Holes</td>
<td>Pipe Connection Details</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1303-V</td>
<td>Maintenance Holes</td>
<td>Changes in Level Details</td>
<td>SEW–203</td>
</tr>
<tr>
<td>SEW–1304-V</td>
<td>Maintenance Holes</td>
<td>Typical Channel Arrangements</td>
<td>SEW–204</td>
</tr>
<tr>
<td>SEW–1305-V</td>
<td>Maintenance Holes</td>
<td>Typical Channel Details</td>
<td>SEW–205</td>
</tr>
<tr>
<td>SEW–1306-V</td>
<td>Maintenance Holes</td>
<td>Alternative Drop Connections</td>
<td>SEW–206</td>
</tr>
<tr>
<td>SEW–1307-V</td>
<td>Maintenance Holes</td>
<td>Step Irons & Ladders</td>
<td>SEW–208</td>
</tr>
<tr>
<td>SEW–1308-V</td>
<td>Maintenance Holes</td>
<td>Typical MH Cover Arrangements</td>
<td>SEW–207</td>
</tr>
<tr>
<td>SEW–1309-V</td>
<td>Maintenance Holes</td>
<td>Sewers DN 375 to DN 750</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1310*</td>
<td>Maintenance Holes</td>
<td>Permanent Formwork ≥ DN 375</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1311*</td>
<td>Maintenance Holes</td>
<td>Depth to Invert 6 m to 15 m</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1312*</td>
<td>Maintenance Holes</td>
<td>Depth to Invert > 15 m</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1313-V</td>
<td>Maintenance Holes</td>
<td>MH Connection Details PVC, PE & PP Pipe</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1314-V</td>
<td>Maintenance Shafts</td>
<td>Typical Installation</td>
<td>SEW–209</td>
</tr>
<tr>
<td>SEW–1315-V</td>
<td>Maintenance Shafts</td>
<td>MS & Variable Bend Installations</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1316</td>
<td>Maintenance Shafts</td>
<td>TMS and Connection Installations</td>
<td>SEW–210</td>
</tr>
<tr>
<td>SEW–1317</td>
<td>Maintenance Holes</td>
<td>Typical MS Cover Arrangements</td>
<td>SEW–212</td>
</tr>
<tr>
<td>SEW–1350-M</td>
<td>Inspection Shafts</td>
<td>Assemblies, Inspection Shaft Details VC Pipes</td>
<td></td>
</tr>
<tr>
<td>SEW–1351-M</td>
<td>Inspection Shafts</td>
<td>Assemblies, Inspection Shaft Details UPVC or Polyethylene Pipes</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL CROSSINGS / STRUCTURES ARRANGEMENTS

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
<th>Equivalent 1999 DRAWING NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEW–1400</td>
<td>Buried Crossings</td>
<td>Syphon Arrangement</td>
<td>SEW–105</td>
</tr>
<tr>
<td>SEW–1401-V</td>
<td>Buried Crossings</td>
<td>Railways</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1402-V</td>
<td>Buried Crossings</td>
<td>Major Roads</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1403-V</td>
<td>Buried Crossings</td>
<td>Bored & Jacked Encasing Pipe Details</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1404</td>
<td>Aerial Crossings</td>
<td>Aqueduct</td>
<td>SEW–106</td>
</tr>
<tr>
<td>SEW–1405</td>
<td>Aerial Crossings</td>
<td>Aqueduct Protection Grille</td>
<td>SEW–107</td>
</tr>
<tr>
<td>SEW–1406</td>
<td>Aerial Crossings</td>
<td>Bridge Crossing Concepts</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1407</td>
<td>Ventilation Systems</td>
<td>Induct Vent</td>
<td>SEW–213</td>
</tr>
<tr>
<td>DRAWING NUMBER</td>
<td>ACTIVITY</td>
<td>TITLE</td>
<td>Equivalent 1999 DRAWING NUMBER</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>SEW–1408</td>
<td>Ventilation Systems</td>
<td>Educt Vent</td>
<td>SEW–213</td>
</tr>
<tr>
<td>SEW–1409-V</td>
<td>Water Seal Arrangements</td>
<td>Mains Type</td>
<td>SEW–214</td>
</tr>
<tr>
<td>SEW–1410*</td>
<td>Water Seal Arrangements</td>
<td>Maintenance Hole System</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1411</td>
<td>Water Seal Arrangements</td>
<td>Twin Maintenance Hole System</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1412</td>
<td>Emergency Relief Structures</td>
<td>Typical Arrangement DN 150 to DN 375</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1450-M</td>
<td>Marker Posts</td>
<td>Marker Posts</td>
<td></td>
</tr>
</tbody>
</table>

SPECIAL CROSSINGS / STRUCTURES ARRANGEMENTS continued

CONNECTIONS TO EXISTING SYSTEMS

<table>
<thead>
<tr>
<th>DRAWING NUMBER</th>
<th>ACTIVITY</th>
<th>TITLE</th>
<th>Equivalent 1999 DRAWING NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEW–1500</td>
<td>Insertions & Repair Systems</td>
<td>Cut–in Methods</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1501-V</td>
<td>Insertions & Repair Systems</td>
<td>Insertion of Junctions</td>
<td>new</td>
</tr>
<tr>
<td>SEW–1502</td>
<td>Insertions & Repair Systems</td>
<td>Maintenance Structures</td>
<td>new</td>
</tr>
</tbody>
</table>

* These Drawings are NOT used by MRWA.